Отправляет email-рассылки с помощью сервиса Sendsay
←  Предыдущая тема Все темы Следующая тема →
Модератор группы пишет:

Гравитационные волны: дорога к открытию

Алексей Левин
«Троицкий вариант» №4(198), 23 февраля 2016 года

11 февраля 2016 года на пресс-конференциях в США и Европе было одновременно объявлено о крупнейшем научном достижении — первой прямой регистрации волн тяготения. Эпохальное открытие сделали члены международной коллаборации LIGO, объединяющей более тысячи ученых из пятнадцати стран. Этот проект был предложен в 1980-е годы профессорами Калифорнийского технологического института Кипом Торном (Kip Thorne) и Рональдом Древером (Ronald Drever) и профессором Массачусетского технологического института Райнером Вайссом (Rainer Weiss). Открытие гравитационных волн произошло почти что ровно через сто лет после публикации статьи Альберта Эйнштейна Näherungsweise Integration der Feldgleichungen der Gravitation, Preussische Akademie der Wissenschaften, Sitzungsberichte, 1916 (part 1), 688–696, где было предсказано их существование.

 

Гравитационные волны: дорога к открытию («Троицкий вариант — Наука»)

Несостоявшаяся сенсация

Гравитационные волны уже «открывали», правда неудачно. В конце 1969 года профессор физики Мэрилендского университета Джозеф Вебер (Joseph Weber) заявил, что обнаружил волны тяготения космического происхождения. До того времени ни один ученый не выступал с подобным заявлением, да и сама возможность детектирования таких волн считалась далеко не очевидной. Однако Вебер слыл авторитетом в своей области, поиском гравитационных волн он занимался более десяти лет, и посему коллеги восприняли его сообщение (вскоре последовали и другие) с полной серьезностью.

 

Джозеф Вебер. Фото из Википедии («Троицкий вариант — Наука»)

Джозеф Вебер в униформе Военно-морской академии США (1940 год). Фото из Википедии

Однако вскоре наступило отрезвление. Амплитуды волн, якобы зарегистрированных Вебером, в миллионы раз превышали теоретически разумную величину. Вебер утверждал, что эти волны пришли из закрытого пылевыми облаками центра нашей Галактики, о котором тогда было мало что известно. Астрофизики тут же предположили, что там скрывается гигантская черная дыра, которая ежегодно пожирает тысячи звезд и выбрасывает часть поглощенной энергии в виде гравитационного излучения, а астрономы занялись тщетным поиском более явственных следов этого космического каннибализма (сейчас доказано, что хотя дыра там и имеется, ведет она себя вполне скромно). Физики из США, СССР, Франции, Германии, Англии и Италии приступили к экспериментам на детекторах того же типа и ничего не добились. К концу 1972 года мало кто сомневался в том, что веберовские результаты можно объяснить чем угодно, но только не воздействием гравитационных волн.

Ученые и доселе не знают, чему приписать странные показания приборов Вебера. Однако его усилия стимулировали создание более чувствительных детекторов волн тяготения, к числу которых принадлежит LIGO, MiniGrail и др. К сожалению, Джозеф Вебер не дожил даже до начала работы LIGO — в сентябре 2000 года он скончался от рака.

Природа гравитационных волн

Часто говорят, что гравитационные волны — это распространяющиеся в пространстве возмущения поля тяготения. Такое определение правильно, но неполно. Согласно Общей теории относительности, тяготение возникает из-за искривления пространственно-временного континуума. Его структура описывается метрическим тензором, определяющим расстояния между бесконечно близкими точками пространства-времени по всем возможным направлениям. Волны тяготения — это флуктуации пространственно-временной метрики, которые проявляют себя как колебания гравитационного поля. По этой-то причине их часто называют пространственно-временной рябью — сравнение образное, хотя и сильно заезженное.

Источником гравитационных волн служат любые движения материальных тел, приводящие к неоднородному изменению силы тяготения в окружающем пространстве. Движущееся с постоянной скоростью тело ничего не излучает, поскольку характер его поля тяготения не изменяется. Для испускания волн тяготения необходимо ускорение, однако отнюдь не всякое. Цилиндр, который вращается вокруг своей главной оси, испытывает ускорение (вспомним школьный курс физики), однако его гравитационное поле остается повсюду однородным, и волны тяготения не возникают. А вот если раскрутить этот цилиндр вокруг другой оси, поле начнет осциллировать, и от цилиндра во все стороны побегут гравитационные волны.

Тот, кто помнит, что такое квадрупольный момент, сразу догадается, что в этой ситуации он не останется постоянным. Таково проявление общего правила — система масс, квадрупольный момент которой меняется со временем, всегда излучает гравитационные волны. Поэтому, в частности, гравитационные волны излучают любые два космических объекта, обращающиеся вокруг общего центра тяжести.

Волны тяготения обладают множеством интереснейших свойств, ограничимся основными.

  1. В пустом пространстве они распространяются со скоростью света. Более того, эта скорость практически всегда сохраняется при встрече с материальными объектами, так что гравитационные волны не претерпевают преломления. Экстремально сверхплотное вещество способно уменьшить скорость гравитационных волн, но в прочих случаях этот эффект пренебрежимо мал. Амплитуды волн тяготения угасают при удалении от источника, однако вовсе не падают до нуля. Можно сказать, что единожды возникшая волна тяготения обречена на вечную жизнь. В частности, Вселенная должна быть пронизана реликтовыми волнами тяготения, унаследованными от инфляционной фазы. В них закодирована информация о строении «зародышевой» Вселенной, которую, правда, еще надо умудриться расшифровать.
  2. Волны тяготения поперечны. Это означает, что такая волна искажает структуру пространства в плоскости, перпендикулярной вектору ее распространения. Твердое тело, попавшее в область волнового гравитационного фронта, будет испытывать деформации именно в этой плоскости (какие именно, зависит от характера волны). В простейшем случае пространство периодически растягивается и сжимается вдоль двух взаимно перпендикулярных направлений, лежащих в этой плоскости.
  3. Гравитационные волны уносят энергию, которую они отбирают у излучающей материи. Поэтому со временем звезды двойной системы сближаются друг с другом, и продолжительность их оборотов вокруг общего центра уменьшается.

Гравитационное излучение от земных источников чрезвычайно слабо. Возьмем стальную колонну массой 10 тыс. тонн, подвесим за центр в горизонтальной плоскости и раскрутим вокруг вертикальной оси до десяти оборотов в секунду (намного быстрее не получится — сталь начнет рваться). Мощность гравитационного излучения такой гигантской вертушки составит примерно 10−24 Вт. Поэтому единственная надежда обнаружить волны тяготения в сколько-нибудь близком будущем — это найти источник гравитационного излучения, пришедшего из космоса.

В этом плане весьма перспективны тесные двойные звезды, пары звезд, разделенных небольшой дистанцией. Причина проста: мощность гравитационного излучения такой системы растет в обратной пропорции к пятой степени ее поперечника. Еще лучше, если траектории звезд сильно вытянуты, так как при этом возрастает скорость изменения квадрупольного момента. Совсем хорошо, если двойная система состоит из компактных релятивистских объектов — белых карликов, нейтронных звезд или черных дыр.

 

Черные дыры искажают пространство-время. Изображение: Henze/NASA («Троицкий вариант — Наука»)

Черные дыры искажают пространство-время (желтые линии) и излучают гравитационные волны. Изображение: Henze / NASA

Гравитационное излучение также порождается коллапсом массивной звезды, исчерпавшей свое термоядерное топливо. Однако деформация звезды должна быть асимметричной, иначе излучение не возникнет. Во время коллапса гравитационные волны могут унести с собой до десятой части полной энергии светила, той, которая определяется эйнштейновской формулой E=mc2

. Мощность гравитационного излучения в этом случае по порядку величины составляет 1050 Вт. Много больше энергии выделяется при слиянии нейтронных звезд, здесь пиковая мощность достигает 1052 Вт. Но самый лучший источник излучения — столкновение черных дыр, поскольку их массы могут превышать массы нейтронных звезд не только в разы, но и в миллионы и даже миллиарды раз. В марте 2006 года американские астрофизики опубликовали очень впечатляющие результаты компьютерной симуляции гравитационных волн, порожденных при таком слиянии, которые теперь были использованы первооткрывателями гравитационных волн. Необходимо отметить, что гравитационное излучение двойной системы имеет периодический характер, а при коллапсах и столкновениях оно высвобождается в виде коротких всплесков.

Гравитационные резонаторы: Вебер и другие

В первой половине прошлого века физики, включая Эйнштейна, не верили в возможность детектирования гравитационных волн. Впервые ее обосновал в 1957 году английский физик Феликс Пирани (Felix Pirani), на работы которого опирался Вебер. Он скончался 31 декабря 2015 года, возможно, так и не успев узнать о торжестве своей идеи.

Вебер использовал в качестве детекторов сплошные алюминиевые цилиндры метровой длины с пьезоэлектрическими датчиками на торцах. Их помещали в вакуумную камеру и с максимальной тщательностью изолировали от внешних механических воздействий. Два таких цилиндра Вебер установил в бункере на поле для гольфа Мэрилендского университета и один в Аргоннской национальной лаборатории неподалеку от Чикаго.

Идея этого эксперимента предельно проста. Пространство под действием гравитационных волн сжимается и растягивается, так что цилиндр вибрирует в продольном направлении, выступая в качестве гравитационно-волновой антенны. Пьезоэлектрические кристаллы отвечают на вибрацию электрической поляризацией, которую не слишком сложно измерить. Любое прохождение цуга космических волн тяготения одновременно действует на детекторы, разнесенные на тысячу километров, что позволяет отфильтровать гравитационные импульсы от различного рода шумов. И измерения, и обработку результатов можно производить по нескольким схемам (что Вебер и делал), однако общий принцип остается неизменным.

Веберовские датчики были в состоянии заметить смещения торцов цилиндра, равные всего 10−15 его длины — в данном случае 10−13 см. Именно такие колебания Веберу удалось обнаружить, о чем он впервые и сообщил в 1969 году на страницах Physical Review Letters. Все попытки повторить эти результаты оказались тщетными. Данные Вебера к тому же противоречили теоретическим выкладкам, которые практически не позволяли ожидать относительных смещений выше 10−18 (причем гораздо вероятней значения менее 10−20). Не исключено, что Вебер напутал при статистической обработке результатов, но это всего лишь гипотеза. Короче говоря, первая попытка обнаружить гравитационное излучение закончилась неудачей.

В дальнейшем гравитационно-волновые антенны значительно усовершенствовали. В 1967 году американский физик Уильям Фэрбенк (William Martin Fairbank) предложил охлаждать их в жидком гелии. Это не только позволило избавиться от большей части тепловых шумов, но и открыло возможность применения сквидов — точнейших сверхпроводящих датчиков электрического тока, использующих эффект Джозефсона. Реализация этой идеи оказалась сопряжена со множеством технических сложностей, и сам Фэрбенк до нее не дожил. К началу 1980-х годов физики из Стэнфордского университета построили установку с чувствительностью порядка 10−18, однако волн не зарегистрировали. Сейчас в ряде стран действуют ультракриогенные вибрационные детекторы волн тяготения, работающие при температурах, лишь на десятые и сотые доли градуса выше абсолютного нуля. Такова, например, установка AURIGA (Antenna Ultracriogenica Risonante per l’Indagine Gravitazionale Astronomica) в итальянском городе Падуе. Антенной для нее служит трехметровый цилиндр из алюминиево-магниевого сплава, диаметр которого составляет 60 см, а вес 2,3 тонны. Он подвешен в вакуумной камере, охлаждаемой до 0,1 кельвина. Его сотрясения (с частотой порядка 1000 Гц) передаются на вспомогательный резонатор массой в 1 кг, который колеблется с такой же частотой, но много большей амплитудой. Эти вибрации регистрируются измерительной аппаратурой и анализируются с помощью компьютера. Чувствительность комплекса AURIGA лежит в интервале 10−20–10−21.

Астрономы не дремлют

 

 

Рассел Халс в своей лаборатории в Принстоне. Фото из Википедии («Троицкий вариант — Наука»)

Рассел Халс в своей лаборатории в Принстоне. Фото из Википедии

Первое — и еще только косвенное — доказательство существования волн тяготения связано с работами американского радиоастронома Джозефа Тейлора (Joseph Hooton Taylor) и его студента Рассела Халса (Russell Alan Hulse). В 1974 году они впервые обнаружили пару обращающихся друг вокруг друга нейтронных звезд PSR B1913+16, что само по себе было серьезным астрономическим открытием. Точнее, сначала они выявили излучающую в радиодиапазоне нейтронную звезду (радиопульсар), а потом нашли у нее молчаливую компаньонку. Пульсар вращается вокруг своей оси со стабильной угловой скоростью (что бывает далеко не всегда) и поэтому служит исключительно точными часами. Эта особенность и позволила чрезвычайно точно измерить массы обеих звезд и выяснить характер их орбитального движения. Оказалось, что период этой двойной системы, который сейчас составляет 3 часа 45 мин, ежегодно сокращается на 70 микросекунд. Эта величина хорошо согласуется с решениями уравнений Общей теории относительности, описывающих потерю энергии звездной пары, обусловленную гравитационным излучением. Впрочем, столкновение звезд случится не скоро, через 300 млн лет. В 1993 году Тейлор и Халс были удостоены за это открытие Нобелевской премии. Любопытно, что открытия первого двойного радиопульсара пришлось ждать еще долго, он был обнаружен учеными из Австралии, Британии, Италии и США лишь в конце 2003 года. Ему осталось жить «всего ничего», каких-нибудь 85 млн лет.

Интерферометры

Еще один способ детектирования волн тяготения основан на отказе от массивных резонаторов в пользу световых лучей. Первыми в 1962 году его предложили советские физики М. Е. Герценштейн и В. И. Пустовойт, а двумя годами позже и Вебер. В начале 1970-х сотрудник исследовательских лабораторий корпорации «Хьюз Эйркрафт» Роберт Форвард (Robert L. Forward), в прошлом аспирант Вебера, в дальнейшем весьма известный писатель-фантаст, построил первый такой детектор с вполне приличной чувствительностью. Тогда же Райнер Вайсс выполнил очень глубокий теоретический анализ возможностей оптических методов регистрации гравитационных волн.

 

Владислав Иванович Пустовойт (фото из Википедии) («Троицкий вариант — Наука»)

Владислав Иванович Пустовойт читает лекцию-доклад «О проблеме обнаружения гравитационных волн» (МИЭТ, 10 февраля 2009 года). Фото из Википедии

Эти методы предполагают использование аналогов вошедшего в историю физики прибора, с помощью которого 125 лет назад американский физик Альберт Майкельсон доказал, что скорость света строго одинакова по всем направлениям. В этой установке, интерферометре Майкельсона, параллельный пучок света попадает на полупрозрачную пластинку и разделяется на два взаимно перпендикулярных луча, которые отражаются от зеркал, расположенных на одинаковом расстоянии от пластинки. Затем световые пучки опять сливаются и падают на экран, где возникает интерференционная картина (светлые и темные полосы и линии). Если скорость света зависит от его направления, то при повороте всей установки эта картинка должна измениться, если нет — остаться такой же, что и раньше.

Интерференционный детектор волн тяготения работает сходным образом. Проходящая волна деформирует пространство и тем изменяет длину каждого плеча интерферометра (пути, по которому свет идет от делителя до зеркала), растягивая одно и сжимая другое. В результате интерференционная картинка меняется, и это-то изменение и нужно зарегистрировать. К сожалению, практическое воплощение этой идеи сопряжено с гигантскими техническими трудностями. Вот одна из них, причем не главная. Если ожидаемое относительное изменение длины плеч интерферометра составляет 10−20, то при настольных размерах прибора (как у Майкельсона) оно оборачивается осцилляциями протяженностью порядка 10−18 см (волны видимого света в 10 трлн раз длиннее). Можно увеличить протяженность плеч до нескольких километров, однако проблемы всё равно остаются. Лазерный источник света должен быть одновременно и достаточно мощным, и чрезвычайно стабильным по частоте, зеркала — идеально плоскими и идеально отражающими, вакуум в трубах, по которым распространяется свет, — максимально глубоким, механическая стабилизация всей системы — воистину совершенной. Короче говоря, интерференционный детектор гравитационных волн — прибор дорогой и громоздкий.

Сегодня самая большая установка этого рода — американский комплекс LIGO (Laser Interferometer Gravitational-Wave Observatory). Он состоит из двух обсерваторий, разнесенных на 3 тыс. км. Одна из них находится на Тихоокеанском побережье США в Ханфорде в штате Вашингтон, а другая — в Ливингстоне в штате Луизиана. Измерения производят с помощью трех интерферометров (два в Ханфорде, один в Ливингстоне) с плечами четырехкилометровой длины. Установка снабжена зеркальными накопителями света, которые увеличивают ее чувствительность.

Парный детекторный комплекс LIGO начал действовать в 2002 году и работал до 2010 года. Он был в состоянии регистрировать смещения зеркал на фантастически малые расстояния — примерно 4×10−16 см. Однако тогда сигналов от гравитационных волн зарегистрировать не удалось. Затем эксперимент был остановлен для глубокой модернизации комплекса, которая обошлась в 205 млн долл. Там были установлены твердотельные лазеры, излучающие на длине волны в 1 микрометр, новые системы гидравлической и электромагнитной стабилизации зеркал и усовершенствованные детекторы. Это позволило существенно снизить уровень низкочастотных шумов и привело к многократному увеличению чувствительности приборов (в 3–5 раз для колебаний в диапазоне 100–300 Гц, и более чем в 10 раз для колебаний с частотой менее 60 Гц). До модернизации предел чувствительности на частотах порядка 100 Гц составлял 10−21, а после нее снизился менее чем до 10−22. Это позволило регистрировать смещения зеркал на 10−17 см, что в 10 тыс. раз меньше диаметра протона.

Усовершенствованный комплекс, Advanced LIGO, приступил к работе в начале осени 2015 года. Всего через три дня, ранним утром 14 сентября, на нем был детектирован сигнал, который участники коллаборации после тщательного анализа и отсечки альтернативных интерпретаций интерпретировали как всплеск гравитационного излучения, рожденный слиянием двух черных дыр. Его начальная частота равнялась 35 Гц, а максимальная — 250 Гц. Разница во времени между приходом сигнала на детекторы составила 7 миллисекунд. Примерно этого и надо было ожидать, принимая во внимание дистанцию между интерферометрами и то обстоятельство, что гравитационные волны, согласно ОТО, распространяются со скоростью света. Достоверность сделанных выводов очень высока — более 5,1 σ.

 

Два наложенных сигнала от двух установок («Троицкий вариант — Наука») Два наложенных сигнала от двух установок. Картинка из презентации

Собранные данные позволили определить массы столкнувшихся дыр, 29 и 36 масс Солнца, и их удаленность от Земли — около 1,3 млрд световых лет. В результате этого катаклизма образовалась быстро вращающаяся черная дыра в 62 солнечных массы. Энергетический эквивалент трех солнечных масс унесло гравитационное излучение, которое через 1300 млн лет дошло до Земли.

Участники коллаборации LIGO получили и другие важные результаты. Они заново оценили комптоновскую длину волны гравитона, кванта гравитационного поля. Согласно этой оценке, она превышает 1013 км. Отсюда следует, что верхняя граница массы гравитона составляет 1,2×10−22 эВ. Этот результат уточняет аналогичные оценки, сделанные на основе изучения двойных пульсаров. Кроме того, теперь доказано существование черных дыр звездного происхождения (то есть возникших в результате коллапса звезд, израсходовавших свое термоядерное топливо), чьи массы превышают 25 солнечных масс. Теперь также можно с уверенностью сказать, что за время существования нашей Вселенной в ней возникло множество двойных черных дыр, что раньше было не вполне очевидно. Наконец, исследователи подсчитали, что за год в области пространства объемом в один кубический гигапарсек происходит от двух до четырехсот слияний спаренных черных дыр. Все эти выводы представлены в статье B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Observation of Gravitational Waves from a Binary Black Hole Merger // Phys. Rev. Lett. 2016. V. 116, 061102.

А что дальше?

Advanced LIGO скоро обретет достойного партнера. Во второй половине нынешнего года предполагается запуск модифицированной версии детектора Virgo, расположенного в Италии неподалеку от Пизы. Это тоже интерферометр с трехкилометровыми плечами, аналогичный LIGO. Он действовал с 2007 по 2011 годы, после чего был остановлен для модернизации. В 2018 году в Японии может приступить к работе интерферометр KAGRA (Kamioka Gravitational Wave Detector), заточенный на регистрацию гравитационных волн, возникающих при слиянии нейтронных звезд; предполагается также создание еще одного детектора проекта LIGO в Индии. Европейское космическое агентство рассматривает проект космической обсерватории для поиска гравитационных волн eLISA (Evolved Laser Interferometer Space Antenna) с длиной плеч в 5 млн км, однако ее запуск, по последним данным, может состояться не ранее середины 2030-х годов.

Это интересно
+4

Модератор группы 30.03.2016 , обновлено  02.04.2016
Пожаловаться Просмотров: 1479  
←  Предыдущая тема Все темы Следующая тема →


Комментарии временно отключены