Эконометрика

  Все выпуски  

Эконометрика - выпуск 1129


"Эконометрика", 1129 выпуск, 12 сентября 2022 года.

Электронная газета кафедры "Экономика и организация производства" научно-учебного комплекса "Инженерный бизнес и менеджмент" МГТУ им.Н.Э. Баумана. Выходит с 2000 г.

Здравствуйте, уважаемые подписчики!

*   *   *   *   *   *   *

Познакомьтесь со статьей по науковедению А.И. Орлова "Единство и борьба полюсов в развитии науки"

Все вышедшие выпуски доступны в Архиве рассылки по адресу subscribe.ru/catalog/science.humanity.econometrika.

*   *   *   *   *   *   *

УДК 303.732.4 : 519.2

08.00.13 Математические и инструментальные методы экономики (экономические науки)

Единство и борьба полюсов в развитии науки

Орлов Александр Иванович

д.э.н., д.т.н., к.ф.-м.н., профессор

РИНЦ SPIN-код: 4342-4994

prof-orlov@mail.ru

Московский государственный технический университет им. Н.Э. Баумана, Россия, 105005, Москва, 2-я Бауманская ул., 5

Для принятия обоснованных решений в области управления наукой необходимо изучать свойства научного сообщества. Для анализа проблем развития реальной науки и управления ею мы предложили выделить в науке биполярные структуры, каждая из которых описывается с помощью двух полюсов и взаимодействия между ними. В 2021 г. мы выявили 23 пары взаимодействующих полюсов в развитии науки. В настоящей статье рассмотрены три. В паре полюсов "фундаментальная наука - прикладная наука" выделены основные свойства этих областей человеческой деятельности, типовые процессы их взаимодействия. Установлена нецелесообразность применения наукометрических показателей продуктивности и результативности в прикладной науке. Показана необходимость оценки вклада в науку конкретных исследователей и их объединений (коллективов различного уровня) и рассмотрены проблемы, возникающие при проведении такой оценки. Обосновано введение понятия "информационного барьера", вызванного принципиальной невозможностью для каждого конкретного исследователя овладеть всей совокупностью накопленной в его области актуальной научной информацией. Информационный барьер - тормоз развития науки. Для его преодоления действуют научные кланы - обособленные группы из нескольких сотен или тысяч исследователей. Ограничение числа членов клана позволяет его членам знать работы друг друга и экспертно оценивать вклад в науку того или иного исследователя из того же клана. Отношение к работам, выполненным вне клана, обычно отрицательное. Клановая структура науки тормозит ее развитие. Особенно сильно она мешает становлению новых направлений исследований, еще не породивших собственных кланов с мощной инфраструктурой. Рассмотрены достоинства и недостатки наукометрических и экспертных методов оценки результативности в науке. Традиционные экспертные методы, основанные на субъективных оценках (тезис), отрицаются объективными наукометрическими подходами (антитезис). В результате выявления различных недостатков наукометрии дальнейшее развитие прогнозируется как синтез наукометрических и экспертных методов

Ключевые слова: развитие науки, управление, научные кланы, биполярные структуры, развитие и борьба противоположностей, наукометрия, экспертные оценки, базы данных, антиплагиат

http://dx.doi.org/10.21515/1990-4665-176-013

UDC 303.732.4 : 519.2

08.00.13 Mathematical and instrumental methods of Economics (economic sciences)

Unity and struggle of the poles in the development of science

Orlov Alexander Ivanovich

Dr.Sci.Econ., Dr.Sci.Tech., Cand.Phys-Math.Sci., professor

prof-orlov@mail.ru

Bauman Moscow State Technical University, Moscow, Russia

To make informed decisions in the field of science management, it is necessary to study the properties of the scientific community. To analyze the problems of the development of real science and its management, we proposed to single out bipolar structures in science, each of which is described with the help of two poles and the interaction between them. In 2021, we have identified 23 pairs of interacting poles in the development of science. This article discusses three. In a pair of poles "fundamental science - applied science" the main properties of these areas of human activity, typical processes of their interaction are highlighted. The inexpediency of using scientometric indicators of productivity and effectiveness in applied science has been established. The necessity of estimation the contribution to science of specific researchers and their associations (teams of different levels) is shown, and the problems arising in the course of such an estimation are considered. The introduction of the concept of "information barrier", caused by the fundamental impossibility for each particular researcher to master the totality of relevant scientific information accumulated in his field, is substantiated. The information barrier is a brake on the development of science. To overcome it, there are scientific clans - isolated groups of several hundred or thousands of researchers. Limiting the number of clan members allows its members to know each other's work and estimate the contribution to science of one or another researcher from the same clan as an expert. Attitude towards work performed outside the clan is usually negative. The clan structure of science hinders its development. Especially strongly it hinders the formation of new areas of research that have not yet given rise to their own clans with a powerful infrastructure. The advantages and disadvantages of scientometric and expert methods for estimation performance in science are considered. Traditional expert methods based on subjective estimation (thesis) are denied by objective scientometric approaches (antithesis). As a result of the identification of various shortcomings of scientometrics, further development is predicted as a synthesis of scientometric and expert methods

Keywords: development of science, management, management, scientific clans, bipolar structures, development and fight of opposites, scientometrics, expert estimations, databases, antiplagiat

1. Введение

Проблемами науковедения, управления наукой, наукометрии автор настоящей статьи занимается с 1980-х годов. Некоторые итоги подведены в совместной монографии 2017 г. [1]. В частности, в ней обоснован выбор числа цитирований публикации в качестве основной характеристики результативности фундаментального научного исследования. В дальнейших работах продемонстрирован вред ориентации на зарубежные базы данных SCOPUS и WEB OF SCIENCE и обоснована ориентация на использование Российского индекса научного цитирования (РИНЦ) [2 - 4].

Для принятия обоснованных решений в области управления наукой необходимо изучать свойства научного сообщества. Однако наукометрия дает лишь поверхностное описания процессов динамики научных публикаций, ее цель - изучения развития науки с определенной точки зрения, а именно, как информационного процесса. Она не нацелена на выявление глубинных процессов развития науки.

С целью устранения этого недостатка мы для анализа проблем развития реальной науки и управления ею предложили выделить в науке биполярные структуры, каждая из которых описывается с помощью двух полюсов и взаимодействия между ними. В работах 2021 г. [5, 6] мы выявили 23 пары взаимодействующих полюсов в развитии науки. Список этих биполярных структур является предварительным. Ожидаем, что он будет доработан в ходе дальнейших исследований. На примере выделенных структур мы в [5, 6] начали демонстрировать единство и борьбу противоположностей в развитии науки. Список 23 пар взаимодействующих полюсов отражает многообразие проблем развития науки. Каждая из перечисленных биполярных структур заслуживает подробного рассмотрения.

Мы начинаем эту работу и в настоящей статье рассматриваем три биполярные структуры из 23 пар полюсов, выделенных в [5, 6]. А именно, обсуждаем следующие пары полюсов: фундаментальная наука - прикладная наука; наукометрия (т.е статистические методы изучения науки) - экспертные методы, прежде всего методы оценки результативности в науке на основе мнения людей; польза программных продуктов класса "Антиплагиат" - вред таких систем. Для каждой из пар полюсов анализируем взаимодействие полюсов во времени, используя один из основных законов диалектики - закон отрицания отрицания (по схеме: тезис - антитезис - синтез).

Автор настоящей статьи - один из самых цитируемых математиков и экономистов России (по данным РИНЦ). Поэтому можно выразить надежду, что читателей заинтересует обсуждение проблем развития науки одним из наиболее результативных действующих исследователей.

2. Фундаментальная наука и прикладная наука

Научные исследования надо различать прежде всего по тому, в чьих интересах они выполнены, для кого предназначаются. Выделим два полюса в развитии науки: прикладная наука и фундаментальная наука.

Один полюс - научные исследования в интересах конкретного заказчика. Например, при разработке конкретного образца космического аппарата или с целью изучения и завоевания рынка товаром определенной фирмы. Оценку результативности подобного исследования дает заказчик. Открытая публикация результатов исследования не является обязательной. Более того, часто она попросту запрещена ради сохранения государственной или коммерческой тайны. Рассматриваемую сферу деятельности назовем прикладной наукой.

Другой полюс - исследования с целью приращения чистого знания, "фундамента науки". Возможность практического применения зачастую даже не рассматривается. Рассматриваемую сферу деятельности назовем фундаментальной наукой. Можно сказать, что фундаментальные исследования - это те исследования, которые никому не нужны (никакому конкретному заказчику). Итог исследований - научные публикации, которые порождают новые публикации. Естественно изучать развитие (фундаментальной) науки как информационного процесса. В первой в мире монографии по наукометрии так и делается [7]. В ней используются два основных показателя деятельности научного работника (организации): показатель продуктивности - число публикаций и показатель результативности - число цитирований в дальнейших публикациях (раз цитируют - работа оказалась полезной).

Говорят также, что фундаментальная наука - это удовлетворение любопытства исследователя за счет государства. Действительно, те, кто финансирует фундаментальную науку, не ожидают решения конкретных прикладных задач. Они вкладывают деньги в расширение знаний, т.е., условно говоря, являются благотворителями. В давние времена в качестве таковых выступали, например, монархи, а сейчас - государство, в том числе через созданные им фонды (например, Российский фонд фундаментальных исследований), а также отдельные лица и организации.

Зачем же они вкладывают деньги в фундаментальные исследования? Во-первых, ожидают (зачастую без достаточных обоснований), что дальнейшее развитие науки приведет к появлению важных прикладных результатов. Во-вторых, в процессе выполнения фундаментальных исследований, помимо получения знаний, развиваются умения и навыки научной работы у лиц, их проводящих, т.е. готовятся кадры (в частности, для прикладной науки).

Из сказанного ясно, что наукометрические показатели (например, данные Российского индекса научных исследований) позволяют оценить продуктивность и результативность деятелей фундаментальной науки, но абсолютно не допускают применения для работников прикладной науки.

В реальности имеются переходные формы между фундаментальной и прикладной наукой. Заказчик может указывать направление исследований, не фиксируя полностью ожидаемые результаты. Это - движение от фундаментальной науки к прикладной.

Есть и движение в обратном направлении - от прикладной науки к фундаментальной. Например, при решении конкретной прикладной задачи разрабатывают новые методы, которые могут оказаться полезными при решении других прикладных задач. Эти методы уже не привязаны к конкретному заказчику, а потому их уже нельзя полностью относить к прикладной науке.

Следующий шаг - изучение этих методов, например, на основе соответствующей математической модели. Такое изучение часто проводят в отрыве от исходной прикладной задачи. Результаты такого изучения уже ближе к фундаментальной науке, чем к прикладной. Они относятся к математике, а не к исходной прикладной области.

Делают и дальнейший шаг - получают подобные методы на основе ранее разработанных теоретических схем (например, вероятностно-статистических моделей). Это уже полностью фундаментальная наука.

Такое движение от прикладной науки к фундаментальной можно проследить при анализе развития различных разделов математики, например, геометрии или математической статистики. В качестве примера можно указать метод наименьших квадратов, первоначально разработанном К. Гауссом для конкретной астрономической задачи. Затем метод наименьших квадратов был успешно применен для решения прикладных задач в самых разных сферах. В настоящее время его рассматривают в рамках математической статистики как части математики.

История науки показывает, что в определенный момент времени наука (как в целом, так и в отдельных областях) тяготеет к тому или другому полюсу. Развитие науки можно описывать в терминах диалектической философии (тезис - антитезис - синтез).

Например, первоначально экономика рассматривалась как наука об управлении хозяйством (тезис). Отрицанием экономических взглядов основоположника этой науки Аристотеля является рыночная экономика (антитезис). А отрицание отрицания, т.е. отрицание рыночной экономики, - это цифровая экономика, развивающаяся на основе солидарной информационной экономики (синтез) [8].

Переход от практики к теории и обратно хорошо виден в развитии теории экспертных оценок и статистики нечисловых данных (более широко - статистических методов). Эти взаимные переходы отражены в новой парадигме математических методов исследования: теория экспертных оценок рассматривается как "зеркало" статистики нечисловых данных [9]. В частности, медиана Кемени, используемая для построения коллективного мнения комиссии экспертов, послужила идейной базой для введения эмпирических средних в пространствах общей природы. В статистике нечисловых данных был доказан закон больших чисел (получены сходимость эмпирических средних к теоретическим), который применительно к теории экспертных оценок позволил установить асимптотическое поведение медианы Кемени и ее приближение к "истинному" бинарному отношению при росте числа независимых экспертов [10, 11].

Хорошо известно, что в ХХ в. ядерная физика вначале относилась к фундаментальной науке (тезис), затем - в ходе разработки ядерного оружия и атомных электростанций произошло отрицание ее статуса - эта область науки стала прежде всего прикладной (антитезис), после чего наметилось отрицание отрицания (синтез), и физики перешли к фундаментальному изучению свойств элементарных частиц.

Отметим здесь влияние подобных переходов на кадровый состав научных структур. Если для фундаментальных исследователей важны люди мысли, то для прикладных - квалифицированные люди действия, организаторы и управленцы. Отнюдь не все из них могут затем перейти к фундаментальным исследованиям. Смягчить переходы от полюса к полюсу может сращивание научных и учебных организаций. Научно-исследовательские институты должны влиться в систему университетов. Тогда в периоды подобных переходов или временных замедлений развития соответствующих научных областей исследователи смогут заняться преподаванием, сохранить квалификацию и воспитать научную смену.

3. Об оценке вклада в науку

Можно ли оценить вклад конкретной работы в развитие науки? Распространено мнение, что это невозможно. Все работы уникальны, и поэтому их сравнение невозможно.

Даже если наблюдаем ряд работ, в каждой из которой улучшается некоторая характеристика по сравнению с предыдущей, нельзя утверждать, что вклад в науку растет вместе с номером работы в таком ряду. В каждой работе есть что-то свое, особенное, помимо улучшения рассматриваемой характеристики. Например, разработан новый метод, который может быть успешно применен при решении других задач.

Кроме того, надо учитывать величину приращения знания. Бывает так, что основоположник прорвался в новую область и получил в ней основные результаты, а последователи улучшают то одну мелочь, то другую. Можно привести такую аналогию. Основоположник построил дом. Последователь, условно говоря, закрасил несколько квадратных сантиметров стены этого дома. Следующий вбил гвоздик, на котором удобно повесить календарь. И так далее. Кто внес основной вклад? Ясно, что тот, кто построил дом. Но если следить за цепочками ссылок в научных публикациях, этого можно не заметить. Второй ссылается на первого, третий - на второго, и про основополагающий вклад первого забывают.

Бывает и иначе. Первый поставил задачу (указал место для строительства), второй создал фундамент, третий возвел стены, четвертый установил крышу, пятый осуществил внутреннюю отделку... В такой ситуации вклад каждого следующего работника науки принципиально важен.

Однако для решения задач управления наукой необходимо оценивать вклад конкретной работы (исследователя, организации, направления) в развитие науки. В частности, при распределении финансирования, организационных решениях, присуждения ученых степеней и званий, пополнении состава советов и академий...

С самого начала развития науки подобная оценка проводилась экспертными методами, на основе субъективных мнений авторитетных лиц. К настоящему времени арсенал экспертных методов весьма широк [12]. Технологии экспертной оценки научных работ подробно проработаны, закреплены в нормативных документах, знакомы всем исследователям, которым приходится им следовать.

Однако с течением времени качество управления наукой на основе экспертных методов стало падать [13]. Обсудим причины этого падения.

4. Информационный барьер в развитии науки

По нашей оценке, основная причина состоит в лавинообразном увеличении в ХХ в. научных результатов и содержащих их научных публикаций. Если в Древней Греции каждый ученый мог знать всех своих коллег и читать их труды, то к началу ХХ в. такая полная осведомленность оказалась возможной лишь в пределах конкретной научной области - в физике, биологии, математике и др. Далее пошло деление на специальности (см. списки научных специальностей Высшей аттестационной комиссии (ВАК)). Но и это не спасло - даже по специальности ВАК нижнего уровня, например, по теории вероятностей и математической статистике к настоящему уровню выпущены миллионы публикаций на всех крупных языках мира.

Сопоставим этот наблюдаемый факт с ограниченностью возможностей человеческого мозга. Если каждую неделю читать по одной статье или книге, то за 100 лет можно овладеть примерно 5200 литературными источниками, т.е. долями процента от всех имеющихся, большая часть из которых остается актуальными, по крайней мере в некоторых отношениях. А сколько новых работ будет выпущено за это время! Можно сказать, что отличительной чертой современности является всеобщее невежество научных работников и преподавателей.

Будем говорить, что развитию науки мешает информационный барьер. И в борьбе с ним цифровизация помогает слабо. В Интернете иногда можно найти ответ на очень конкретный вопрос (например, когда родился конкретный человек). В ответ на более общий вопрос поисковик выдает информацию о тысячах сайтов. А в этих сайтах зачастую ошибки и невежественные утверждения. Не зря в научных статьях не рекомендуют ссылаться на Википедию.

Одним из заметных следствий сказанного является практическая невозможность для членов диссертационных советов выявить элементы новизны рассматриваемых диссертационных работ. Эта обязанность возложена на самих диссертантов, предъявляющих соответствующий раздел в своих авторефератах. Отметим также, что в диссертационных работах весьма редко используются результаты лауреатов нобелевских премий и членов Российской академии наук (РАН). Это свидетельствует, разумеется, о резком падении значения работ нобелевских лауреатов и членов РАН для научного сообщества.

5. Клановая структура науки

В борьбе с информационным барьером помогает клановая структура науки, Непосредственно наблюдаем разбиение действующих исследователей на кланы численностью в несколько сотен или тысяч человек. Такой объем позволяет членам клана знать работы друг друга, как следствие, экспертным путем оценивать вклад в науку того или иного исследователя, входящего в тот же клан. В то же время внутри клана игнорируются научные результаты тех, кто не входит в этот клан. Сформировавшиеся кланы обычно обладают развитой инфраструктурой. Есть свои базовые организации (институты, кафедры), выпускаются научные журналы, проводятся конференции. Устоявшиеся кланы называют научными школами.

Как правило, организована подготовка следующего поколения членов клана, полученные кланом результаты транслируются с помощью учебников. Заметим тут, что результаты, не включенные в учебники, постепенно забываются, поскольку следующее поколение с ними уже не знакомо.

Очевидно, кланы пересекаются. Достаточно часто наблюдаем матричную организационную систему, в которой исследователь относится в нескольким кланам. Например, работая в научно-исследовательском институте или вузе, он входит в клан этой организации. Одновременно он принадлежит определенному профессиональному клану, члены которого разбросаны по различным организациям, но изучают близкие вопросы.

Некоторые контакты между кланами происходят в ходе научных конференций, работы диссертационных советов и иных собраний. Однако в этих контактах участвуют лишь наиболее продвинутые и активные исследователи, рядовые и начинающие исследователи не выходят за пределы клана.

Из сказанного ясно, что результаты различных экспертиз определяются во многом тем, к каким кланам относятся эксперты. На основе своих сложившихся предпочтений эксперты поддерживают представителей своего клана и отрицательно относятся к работам исследователей из других кланов. Меры по привлечению независимых экспертов обычно не достигают своей цели.

Например, в РИНЦ по тематике "математика" зарегистрировано 20647 исследователей (на 16 января 2022 г.). Однако Отделение математики РАН захвачено кланом сотрудников трех институтов математики РАН в Москве, Санкт-Петербурге и Новосибирске, в которых работает менее 1000 лиц. В академики и члены-корреспонденты избирают лишь из состава этого клана. Назовем его академическим. Указанный клан занял монопольное положение как в организационных структурах, так и в массовом сознании научных работников. Ему удалось ввести апартеид, дискриминируя основную массу исследователей, фактически отнеся их к второсортным деятелям.

В то же время вклад в математику академического клана отнюдь не является определяющим. По числу цитирований (по РИНЦ) из ныне живущих членов Отделения математики РАН самый результативный находится на 11-м месте, следующий - на 18-м. Можно констатировать, что в фундаментальной науке академический клан нельзя считать первенствующим. А в прикладной науке значение этого клана вообще ничтожно.

Клановая структура науки особенно сильно мешает развитию новых направлений исследований, еще не породивших собственных кланов с мощной инфраструктурой. Новаторы испытывают сложности с публикациями, защитой диссертаций, финансированием. Кланы фиксируют давно сложившуюся структуру науки, являются тормозом в ее развитии.

6. Наукометрические и экспертные методы оценки результативности в науке

Давно ощущается необходимость в разработке инструментария, позволяющего объективно оценивать вклад в науку конкретных работ, лиц, организаций. Как говорят, проводить сравнение вкладов "по гамбургскому счету". Для фундаментальных наук такой инструментарий предоставляет наукометрия, занимающаяся изучением развития науки как информационного процесса. Как уже говорилось, вклад работы в науку измеряется вкладом исследования в информационный процесс, т.е. числом ее цитирований в дальнейших публикациях. Раз цитируют - значит, работа нужна.

Наукометрический подход (антитезис) - отрицание традиционного многовекового подхода, основанного на субъективных мнениях, личных и клановых связях, сложившейся репутации, т.е. на экспертных оценках (тезис). Можно кратко сказать, что наукометрия - объективный инструмент измерения вклада в науку. Его широкое применение стало возможным с развитием информационно-коммуникационных технологий, методов анализа больших данных, позволяющих охватить большинство публикаций с целью изучения развития науки как информационного процесса [7].

В последние годы в России наукометрические показатели стали активно использоваться администраторами для управления наукой, прежде всего для оценки научных достижений. При этом некоторые лица, считающиеся признанными научными работниками и профессорами, внезапно обнаружили, что их наукометрические показатели являются довольно скромными по сравнению с показателями других исследователей. Проще говоря, обнаружили, что их работы сравнительно мало цитируют. Естественно, они стали выражать свое недовольство и предпринимать всевозможные действия для сохранения своего привилегированного положения..

Любой инструмент измерения имеет погрешности. Наукометрия - не исключение. Погрешности наукометрических выводов обсуждались, например, в вышедшем под нашей редакцией сборнике статей "Наукометрия и экспертиза в управлении наукой" [14].

Как только наукометрические показатели стали использоваться административными органами для управления наукой, появились методы их фальсификации в интересах тех или иных лиц и организаций. Например, устоявшиеся академические кланы стали вводить градации среди различных видов публикаций. Например, монографии и учебники стали цениться гораздо меньше, чем публикации в журналах. А сами журналы стали делить на категории. Разработаны и различные иные способы "накрутки" наукометрических показателей, например, искусственного завышения индекса Хирша [15].

Весьма важно, какой базой библиометрических данных пользоваться при расчете наукометрических показателей. Как уже отмечалось, нами продемонстрирован вред ориентации на зарубежные базы данных SCOPUS и WEB OF SCIENCE при решении задач управления наукой, поскольку такая ориентация приводит к резкому искажению наукометрических показателей и разнообразным отрицательным последствиям для развитии российской науки. По нашему мнению, в первую очередь надо использовать Российский индекса научного цитирования (РИНЦ) [2, 3].

Критика бездумного наукометрии во многом справедлива. Можно говорить об отрицании наукометрии как панацеи и переходе к совместному использованию наукометрических и экспертных методов на новом витке диалектической спирали развития науки. Т.е. речь идет об отрицании отрицания экспертных методов управления наукой и переходе к синтезу рассматриваемых полюсов на очередном этапе развития науки. Совместное использование наукометрических и экспертных методов анализирует, например, Б.Г. Миркин, обсуждая понятие научного вклада и рассматривая реальные процедуры оценки вклада на примере Великобритании [16]

Необходимо дальнейшее исследования такого феномена, как научный клан. Несмотря на большой интерес научной общественности к проблемам наукометрии, полученные в ней собственно научные результаты пока еще довольно поверхностны. Требуется дальнейшее изучение с помощью специализированных программных продуктов [17].

Очевидно, что необходима бескомпромиссная борьба со всем, что замедляет научный прогресс [18].

7. Борьбы с плагиатом на современном этапе развития науки

Выделим два полюса научной работы - собственные исследования и анализ предшествующих работ. Обычно ожидают, что исследователь ищет, находит и цитирует своих предшественников. Очевидно, ему мешает информационный барьер (см. выше), в том числе языковый. Перевод работы может быть осуществлен с помощью тех или иных программных средств, но надо знать, что переводить. Распространена и противоположная точка, согласно которой надо начинать с разработки собственных подходов к решению задачи, а поиск предшественников проводить на заключительном этапе исследования. В любом случае можно ожидать увеличения со временем появления повторов, когда однажды полученный научный результат повторяется другим исследователем, не подозревающим о работах предшественников. Печально, когда однажды разоблаченная ошибка повторяется вновь и вновь. В течение всего научного пути автора, т.е. в течение пятидесяти лет, вновь и вновь наблюдаются ошибки, связанные с попытками использовать критерии Колмогорова и омега-квадрат для проверки нормальности распределения. Суть дела изложена в статье [19]. Особенно печально, что ошибка постоянно кочует из учебника в учебник. Профессора-невежды готовят себе на смену новых невежд...

На современном этапе развития науки проявились новые аспекты обсуждаемой проблемы. Взаимодействие рассматриваемых полюсов естественно показать на примере использования программных продуктов класса "Антиплагиат".

В науке и преподавании плагиат - это некорректное заимствование чужого текста, т.е. без указания автора и источника (т.е. без оформленного должным образом цитирования). Часто плагиат связывают с нарушением авторского права. Однако ущерб правообладателю часто бывает лишь моральным, а плагиатор действует лишь с целью получения благ для себя лично, а не с целью нанести финансовый ущерб настоящему автору.

С широким распространением компьютеров студенты стали готовить свои работы с их помощью. Некоторым из них вполне естественно найти в Интернете подходящий текст и вставить его в свою курсовую или квалификационную работу. Преподаватель, скорее всего, не заменит - не может же он помнить наизусть все подходящие источники. Следующий шаг развития подлога - отправить свой файл товарищу, который получит уже полностью готовый раздел для своего сочинения. Результат понятен - технический прогресс может заметно облегчить жизнь студентов.

Аналогичный подход стали применять и диссертанты. Подходящие для диссертации тексты можно найти в Интернете, вставить в свою работу, а потом и передать товарищу. Оппоненты, члены диссертационных советов и даже научный руководитель могут и не заметить плагиата, поскольку каждый из научных работников и преподавателей знает лишь доли процента от общего числа опубликованных работ по своей специальности.

Естественно использовать описанную технологию и для подготовки публикаций в научных журналах и сборников материалов конференций. Весьма мала вероятность того, что заимствование будет обнаружено автором исходного текста. Даже если и будет обнаружено, санкций не последует, поскольку нет адекватного репрессивного аппарата.

Однако технический прогресс позволил найти противоядие. Современные информационно-коммуникационные технологии позволяют просмотреть все имеющиеся в Интернете тексты и выявить повторы. Такую работу успешно проводят программные продукты класса "Антиплагиат". В настоящее время все студенческие работы и диссертации проверяют с помощью того или иного продукта этого класса. При обнаружении заимствований (без ссылок на источники) работы отправляют на переработку.

Уже на этом этапе бездумное применение систем "Антиплагиат" привело к некоторым отрицательным последствиям. Так, диссертанту вполне естественно составить свою классификационную работу из опубликованных им ранее статей. Однако "Антиплагиат" обнаруживает повторы, что ведет к требованиям о переработке текста диссертации. Недавно (с 1 августа 2021 г.) Высшая аттестационная комиссия (ВАК) вновь допустила защиты на основе доклада по опубликованным работам, однако такие защиты пока единичны. Отметим, что тридцать дет назад - в 1992 г. - свою первую докторскую диссертацию по техническим наукам автор защищал именно так, без подготовки текста докторской диссертации.

В настоящее время активно действует общественная организация "Диссернет", на сайте которой сказано, что это "вольное сетевое сообщество экспертов, исследователей и репортеров, посвящающих свой труд разоблачениям мошенников, фальсификаторов и лжецов". В соответствии с "Положением о присуждении ученых степеней" Министерством науки и высшего образования Российской Федерации может быть принято решение об отмене решения диссертационного совета о присуждении ученой степени. Заявление о лишении ученой степени может быть подано в течение 10 лет со дня принятия диссертационным советом решения о присуждении ученой степени. Примерно в половине случаев возбуждения дела о лишении ученой степени случаев заявление подает Диссернет. Таким образом, имеется правовой механизм принятия подобных решений. И он эффективно используется. К сожалению, невозможно привлечь к ответственности плагиаторов, для деяний которых срок давности уже истек.

Выявлены организации и диссертационные советы, для которых плагиат десять лет назад был нормой, а не исключением. Например, нарушителям научной этики представляется, что анализ литературных источников для диссертаций одного и того же направления может быть типовым. Если источники одни и те же, то и их анализ может быть одним и тем же - зачем отходить от проверенного временем стандартного изложения? В настоящее время ВАК безоговорочно рассматривает повтор текста как плагиат, который является основанием для наказания автора более поздней работы. Может возникнуть вопрос: надо ли решать ученой степени допустившее плагиат лицо, которое за последующие годы продемонстрировало свое умение получать ценные научные результаты? Однако такой вопрос носит обычно лишь теоретический характер, поскольку диссертант-плагиатор ничего в науке не делает в течение многих лет. Более того, он может беспрепятственно разлагать следующие поколения, своим примером демонстрируя безнаказанность нарушения научной этики.

Действующая процедура лишения научной степени задана в нормативных документах, и мы не будем ее разбирать здесь.

Чтобы избежать обвинений в плагиате, недобросовестные авторы стали перефразировать тексты, пересказывать их своими словами. Один из вариантов действий: русский текст перевести на английский (без затрат труда, применяя программы машинного перевода), а затем обратно - с английского на русский. Слова изменятся, смысл останется. Речь идет о некорректном заимствовании смысла, идей, а не их оформления в виде текста. Отметим, что возникает проблема: всегда ли такой пересказ надо квалифицировать как плагиат? Ведь при рассмотрении работ предшественников приходится пересказывать их идеи, причем желательно делать это близко к оригинальному сочинению, чтобы не исказить его содержание.

На это новшество борцы с плагиатом ответы созданием программ, позволяющих выявлять подобные трансформации текста. Результаты формального применения такого подхода хорошо показаны в известном сборнике "Физики продолжают шутить" [20]. Предисловие в этой книге составлено из набора стандартных фраз, для каждой из которых и даже для их частей указан литературный источник. Например:

"В заключение..."

С.Г. Калашников. "Электричество", Наука, изд. 2-е, 1964.

"... следует упомянуть..."

С. Глестон и М. Эдлунд. "Основы теории ядерных реакторов", ИЛ, 1954.

"...что..."

В. Смирнов. "Курс высшей математики", изд. 12-е, 1953.

".. деловая критика и всякие указания на недостатки и упущения будут с благодарностью приняты коллективом авторов".

"Курс физики" под редакцией Н. Д. Папалекси, М., 1948.

Примерно так работают продвинутые системы класса "Антиплагиат". Пример, конечно, утрирован. Но суть современной проблемы была выявлена еще более полувека назад. Вряд ли столь тщательное цитирование полезно.

8. Польза и вред программных продуктов класса "Антиплагиат"

Безудержная борьба с плагиатом фактически приводит к отрицанию цели издания научных статей, которая, очевидно, состоит в том, чтобы передать читателю полезную для информацию, полученную в результате исследований автора. Весьма полезны для развития науки обзоры, а также обобщающие статьи, в которых автор сводит вместе результаты предыдущих исследований, в том числе своих. В качестве примера укажем ежемесячный научно-технический журнал "Заводская лаборатория. Диагностика материалов" - один из старейших в нашей стране (основан в январе 1932 г.). В нем постоянно публикуются обзоры и обобщающие статьи, которые были бы забракованы ретивыми антиплагиаторами. Очевидно, такие статьи основаны на анализе и систематизации ранее предложенных подходов и полученных результатов, а потому содержат описание этих подходов и результатов, что и будет формально установлено при применении программ "Антиплагиат", выявляющих не столько полное заимствование, сколько схожесть текстов по смыслу, а потому и по форме. В итоге антиплагиаторы ставят заслон обзорам и обобщающим статьям, тем самым наносят заметный ущерб развитию науки.

Таким образом, применение программных продуктов класса "Антиплагиат" может приносить как пользу, так и вред.

Польза видна прежде всего при работе с начинающими исследователями, стимулируя их к изложению самостоятельно полученных научных результатов и пресекая пересказ известного материала. Начинающие исследователи обычно начинают "с нуля", у них нет накопленного багажа идей, подходов и результатов, а потому выявляются повторы лишь чужих текстов.

На наш взгляд, основное требование к научной публикации - быть полезной читателям. Однако у каждого издания - свои читатели. Отсюда следует, что в ряде случаев повторное изложение результатов не только не вредно, но необходимо. Например, экономисту могут быть полезны новые результаты в области прикладной статистики, опубликованные в журнале "Заводская лаборатория. Диагностика материалов". Однако очевидно и подтверждается наблюдениями, экономист не будет читать этот журнал - название отпугнет. Следовательно, для экономиста нужно специально рассказать, хотя бы в обзоре. Недаром учебники обычно не проверяют на антиплагиат. Хотя зачастую учебник является одновременно научной монографией. Именно на это нацелен принцип МГТУ им. Н.Э. Баумана "Образование - через науку".

Особенно возмущает отрицательное отношение к самоплагиату, т.е. к повторному описанию собственных результатов автора. Пропагандисты такого отношения, видимо, считают, что любая новая работа начинается с нуля. На самом же деле новые результаты опираются на предыдущие публикации исследователя, которые, естественно, надо более или менее подробно описать в новой статье. Необходимо также показать место новых результатов в системе ранее полученных. Это необходимо прежде всего для читателя.

О вреде бездумного применения программных продуктов класса "Антиплагиат" в первом приближении сказано достаточно. Предлагается ограничить использование таких продуктов, использовать их только для контроля качества работ начинающих исследователей, студентов и соискателей. Во всех остальных случаях следует исходить из интересов читателей, а не формальных результатов компьютерного анализа.

Итак, показано, что польза систем класса "Антиплагиат" (тезис) при отрицании исходной нацеленности на контроль качества студенческих работ и распространении на всеобщий контроль публикаций с применением необоснованных требований переходит во вред (антитезис). Прогнозируем, что отрицание отрицания (синтез) позволит разработать и внедрить сбалансированные, взвешенные рекомендации, позволяющие обеспечить соответствие публикаций интересам читателей.

9. Заключительные замечания

Новый взгляд на проблемы экономики и управления наукой был предложен нами в работах [5, 6]. Его основная идеи - выделение в процессах развития науки пар противостоящих друг другу полюсов и изучение развернутого во времени взаимодействия полюсов одной пары. Подобное взаимодействие естественно описывать как единство и борьбу противоположностей, используя триаду "тезис - антитезис - синтез". Разработанный нами подход позволяет выявить "скрытые пружины" развития науки, упорядочить наблюдаемые факты и предложить рекомендации, направленные на рационализацию процессов управления наукой.

Из 23 пар полюсов, выделенных в работах [5, 6], в настоящей статье рассмотрены лишь некоторые.

В паре полюсов "фундаментальная наука - прикладная наука" выделены основные свойства этих областей человеческой деятельности, типовые процессы их взаимодействия. В частности, установлена нецелесообразность применения наукометрических показателей продуктивности и результативности в сфере прикладной науки.

Показана необходимость оценки вклада в науку конкретных исследователей и их объединений (коллективов различного уровня) и кратко рассмотрены проблемы, возникающие при проведении такой оценки.

Обосновано введение понятия "информационного барьера", вызванного принципиальной невозможностью для каждого конкретного исследователя овладеть всей совокупностью накопленной в его области актуальной научной информацией. Эта невозможность обусловлена огромным количеством накопленных научных результатов, т.е. является обратной стороной экспоненциального роста науки в последние столетия. Мы попали в парадоксальную ситуацию - проходится признать, что все работники науки - невежды. Очевидно, что информационный барьер - тормоз развития науки.

Для преодоления информационного барьера практика выработала методы, основанный на выделении научных кланов - обособленных групп из нескольких сотен или тысяч человек. Ограничение числа членов клана позволяет его членам знать работы друг друга, как следствие, экспертным путем оценивать вклад в науку того или иного исследователя, входящего в тот же клан. Отношение к работам, выполненным вне клана, обычно отрицательное. Клановая структура науки тормозит ее развитие. Особенно сильно она мешает становлению новых направлений исследований, еще не породивших собственных кланов с мощной инфраструктурой. Новаторы испытывают сложности с публикациями, защитой диссертаций, финансированием. Кланы фиксируют давно сложившуюся структуру науки, являются тормозом в ее развитии.

Рассмотрены достоинства и недостатки наукометрических и экспертных методов оценки результативности в науке. Традиционные экспертные методы, основанные на субъективных оценках (тезис), отрицаются объективными наукометрическими подходами (антитезис). В результате выявления различных недостатков наукометрии дальнейшее развитие прогнозируется как синтез наукометрических и экспертных методов.

Единство и борьба противоположностей рассмотрены на примере двух полюсов научной работы, соответствующих собственным исследованиям и анализу предшествующих работ. Важный аспект взаимодействия этих полюсов - борьба с плагиатом на современном этапе развития науки. Обсуждается польза и вред программных продуктов класса "Антиплагиат". Показано, что польза таких систем (тезис) при отрицании исходной нацеленности на контроль качества студенческих работ и распространению на все научные публикации переходит во вред (антитезис), поскольку "рубит на корню" обзорные и обобщающие исследования. Прогнозируем, что отрицание отрицания (синтез) даст сбалансированные, взвешенные рекомендации, ориентированные на пользу для читателей научных работ.

По итогам настоящей статьи можно заключить, что целесообразными являются дальнейшие исследования, как по тематике трех рассмотренных пар полюсов, так и для остальных двадцати пар, выделенных ранее в статьях [5. 6].

Литература

1. Лойко В. И., Луценко Е. В., Орлов А. И. Современные подходы в наукометрии: монография / Под науч. ред. проф. С. Г. Фалько. - Краснодар: КубГАУ, 2017. - 532 с.

2. Орлов А.И. Статистические и экспертные методы наукометрии при управлении научной деятельностью / Biocosmology - neo-Aristotelism. 2019. V.9, No. 3-4. С. 308-329.

3. Орлов А.И. Вред ориентации на базы данных SCOPUS и WEB OF SCIENCE // Россия: Тенденции и перспективы развития. Ежегодник. Вып. 16: Материалы XX Национальной научной конференции с международным участием "Модернизация России: приоритеты, проблемы, решения" / РАН. ИНИОН. Отд. науч. сотрудничества; Отв. ред. В.И. Герасимов. - М., 2021. - Ч. 1. - С. 835-840.

4. Орлов А.И. Статистические и экспертные методы в задачах экономики и управления наукой // Научный журнал КубГАУ. 2021. No.166. С. 1-35.

5. Орлов А.И. Наукометрия и экспертиза в управлении наукой: развитие и борьба полюсов // Научный журнал КубГАУ. 2021. No.173. С. 143-166.

6. Орлов А.И. Науковедение в свете биокосмологической инициативы // Biocosmology - neo-Aristotelism, Vol.11. Nos.3&4 (Summer/Autumn 2021). Pp. 188-206.

7. Налимов В.В., Мульченко З.М. Наукометрия. Изучение развития науки как информационного процесса. - М.: Наука, 1969. - 192 с.

8. Орлов А.И. Смена парадигм экономической науки: Аристотель - рыночная экономика - солидарная информационная экономика // Россия: Тенденции и перспективы развития. Ежегодник. Вып. 16: Материалы XX Национальной научной конференции с международным участием "Модернизация России: приоритеты, проблемы, решения" / РАН. ИНИОН. Отд. науч. сотрудничества; Отв. ред. В.И. Герасимов. - М., 2021. - Ч. 1. - С. 841-845.

9. Орлов А. И. О новой парадигме математических методов исследования / Научный журнал КубГАУ. 2016. No.122. С. 807-832.

10. Орлов А.И. Статистика нечисловых данных за сорок лет (обзор) // Заводская лаборатория. Диагностика материалов. 2019. Т.85. No.11. - С. 69-84.

11. Орлов А.И. Статистика нечисловых данных - центральная часть современной прикладной статистики // Научный журнал КубГАУ. 2020. No.156. С. 111-142.

12. Орлов А.И. Организационно-экономическое моделирование : учебник : в 3 ч. Ч.2. Экспертные оценки. - М.: Изд-во МГТУ им. Н. Э. Баумана, 2011. - 486 с.

13. Фрадков А.Л. Блеск и нищета формальных критериев научной экспертизы // Наукометрия и экспертиза в управлении наукой: сборник статей. - М.: Институт проблем управления РАН, 2013. - С. 346-361.

14. Наукометрия и экспертиза в управлении наукой: сборник статей / Под ред. Д.А. Новикова, А.И. Орлова, П.Ю. Чеботарева. - М.: Институт проблем управления РАН, 2013. - 572 с.

15. Луценко Е.В., Орлов А.И. Количественная оценка степени манипулирования индексом Хирша и его модификация, устойчивая к манипулированию // Научный журнал КубГАУ. 2016. No. 121. С. 202-234.

16. Миркин Б.Г. О понятии научного вклада и его измерителях // Наукометрия и экспертиза в управлении наукой: сборник статей. - М.: Институт проблем управления РАН, 2013. - С. 292-307.

17. Луценко Е.В., Орлов А.И., Глухов В.А. Наукометрическая интеллектуальная измерительная система по данным РИНЦ на основе АСК-анализа и системы "Эйдос" // Научный журнал КубГАУ. 2016. No. 122. С. 157-212.

18. Крюков В.А., Тесля П.Н. Что замедляет научный прогресс // ЭКО, 2022, Т.52, No.1, С. 8-34.

19. Орлов А.И. Непараметрические критерии согласия Колмогорова, Смирнова, омега-квадрат и ошибки при их применении // Научный журнал КубГАУ. 2014. No. 97. С. 32-45.

20. Физики продолжают шутить. Сборник переводов / Сост.-пер.: Ю. Конобеев, В. Павлинчук, Н. Работнов, В. Турчин. - М.: Мир, 1968. - 318 с.

Публикация:

1215. Орлов А.И. Единство и борьба полюсов в развитии науки // Научный журнал КубГАУ. 2022. No.176. С. 156-180.

http://ej.kubagro.ru/2022/02/pdf/13.pdf

*   *   *   *   *   *   *

На сайте "Высокие статистические технологии", расположенном по адресу http://orlovs.pp.ru, представлены:

На сайте есть форум, в котором вы можете задать вопросы профессору А.И.Орлову и получить на них ответ.

*   *   *   *   *   *   *

Удачи вам и счастья!


В избранное