Отправляет email-рассылки с помощью сервиса Sendsay

Beltion Game

  Все выпуски  

Beltion Game Революция ИИ: как нейросети и дипфейки формируют новый мир


Том Холланд и Роберт Дауни-младший не были главными героями фильма «Назад в будущее». Шварценеггер даже не пробовался на роль в «Старикам тут не место». А Дональд Трамп не снимался в сериале «Лучше звоните Солу».

Потому что все это не настоящие кадры, а демонстрация одного из самых продвинутых способов фальсификации изображений за многолетнюю историю.

Это текстовая версия видео, которое можно посмотреть в плеере ниже или на этой страничке.

Первые шаги

Первым фотоманипуляциям почти столько же лет, сколько и фотографии. Практика возникла вскоре после 1822 года, когда был изобретен процесс запечатления мира при помощи света, специальных пластин и химических веществ. Но несмотря на развитие технологий, метод создания подделок оставался физическим вплоть до появления цифровой съемки. При помощи двойной экспозиции получали комплексные сцены не имеющие ничего общего с реальностью, людей вырезали из кадров обычными ножницами или накладывали им чужие лица. Элементы закрашивали красками или стирали при помощи ластиков.

Долгие годы махинации оставались скрытыми мало кому приходило в голову ставить под вопрос правдоподобность запечатленных моментов. Фотография была еще одной инновацией, захватывающей мир слишком быстро, чтобы обычные люди заметили подделку.

[embedded content]

В начале 20 века на сцену вышел кинематограф. Индустрия быстро нашла применение манипуляциям, открыв новую область визуальные эффекты.

Эти трюки оставались уделом профессионалов вплоть до наступления эпохи цифровой информации. Стремительное развитие компьютеров, программ визуализации и интернета позволило любому человеку не только создавать фальсификации за считанные часы, но и распространять их среди миллионов зевак.

Рождение дипфейков

В конце 2017 года наступил новый этап в области манипулирования фото и видео-контентом. Появились дипфейки.

Технология получила название два с половиной года назад, позаимствовав его у пользователя реддит. Суть заключалась в простой замене одних лиц на другие. Процесс можно сравнить с наложением виртуальной маски путем отслеживания ключевых точек на лице. Но эффект достигался совершенно другим способом. Для дипфейков применялось глубокое обучение один из разделов машинного обучения, полагающегося на искусственные нейросети.

Первичные алгоритмы были сложны в использовании, однако нашлось достаточно желающих производить порнографические ролики с известными актрисами. Ничто так не способствует распространению технологий, как порно.

С тех пор были разработаны удобные инструменты, которые не требуют опыта с кодом и нейросетями для генерации дипфейков. Сегодня достаточно иметь мощный компьютер, а значительную часть работы софт выполнит самостоятельно.

Метод можно разделить на серию простых шагов, которые полагаются на два элемента: источник и цель.

Источник необходим для наполнения библиотеки отдельными кадрами и последующего вырезания лица. Достаточно одного видео или нарезки роликов, чтобы иметь набор информации для обучения нейросети.

Цель это то видео, на которое будет накладываться лицо, вырезанное из исходного материала.

Комплект небольших программ выполняет всю скучную работу за человека, хотя концепция остается той же, что и сто лет назад. Отличие лишь в автоматизации. Для этого и применяются нейросети они анализируют тысячи изображений с лицом источника и цели, отмечая черты и мимику. После сотен тысяч циклов обучения, которые могут занять дни даже на топовом железе, алгоритм конвертирует данные в окончательное видео.

Аналогичные нейросети позволяют масштабировать видео до 4K-разрешения, повышать частоту кадров, раскрашивать черно-белые ролики, превращать эскизы в полноценные картинки. Примитивный искусственный интеллект поддается обучению тысячам задач, которые сегодня выполняют люди.

Несмотря на впечатляющие результаты, мы находимся на ранних стадиях индустрии, способной изменить наше представление о будущем.

Производители железа предлагают решения, ускоряющие процессы обучения нейросетей и скорость только будет расти. Со временем появятся комплексные приложения, выполняющие все шаги по генерированию дипфейков. За ними последуют сервисы, предлагающие услуги по кастомизации фильмов, сериалов и игр. Достаточно выбрать актера, которого хочешь видеть в очередном фильме про Джеймса Бонда, а нейросеть заменит лицо и голос.

Посмотрите на современные социальные сети, с персональными лентами новостей и кастомными фидами мы уже потребляем контент, подобранный алгоритмами специально для нас. Так что появление опций настройки актерского состава это вопрос времени.

Однако лишь актерами мы ограничиваться не станем. Нейросети смогут генерировать окружающую среду, персонажей в играх, локации, которые не выглядят искусственными и сложные, многоуровневые квесты. Без работы разработчики в любом случае не останутся. Кому-то будет необходимо обучать, контролировать и настраивать процессы.

То же касается аниматоров художникам не придется тратить месяцы на оживление персонажей. Достаточно будет установить ключевые точки и описать цель. Специально обученная нейросеть заполнит пробелы и отметит моменты, требующие ручной доработки.

Необходимо придумать нового персонажа? Не проблема уже сейчас есть нейросети, генерирующие уникальных аниме-персонажей по заданным параметрам. Есть нейросети, которые пишут небольшую биографию на основе имени и нескольких слов.

Никак не решите, как назвать личный космический корабль? Нейросеть поможет и с этим. Как насчет «Горячего пирожка» или «Восьми злобных чувств пончика».

Алгоритмы для написания хитовых песен. Ремастеры старых игр. Создание несуществующих людей. Воображение новых видов спорта.

Нейросети уже придумывают новые лекарства, помогают с анализами и диагностикой. В будущем они станут основой медицинских роботов, оказывающих персональную помощь быстро и с минимальными ошибками.

Нет ни одной области, в которой нельзя найти применение нейросетям. Даже монтаж роликов для ютуба будет автоматизирован. Adobe уже активно применяет искусственный интеллект, помогая в обработке фотографий и видео. Скорость и качество будут только развиваться.

С одной стороны, все это может звучать жутко. Получается, что нейросетевые сервисы начнут массово вытеснять людей. Действительно, зачем держать десятки художников, если нейросеть справляется быстрее, лучше и дешевле? Зачем сотни человек в отделах поддержки, когда пара алгоритмов работает эффективнее и не попросит перерыв на обед? Просто задумайтесь о том, какие обязанности вы выполняете сегодня и задайте себе вопрос а можно ли их автоматизировать?

Не впадайте в панику еще рано. До момента, когда наступит такая реальность, пройдет много лет.

В свое время автомобили вызывали страх, что миллионы людей и лошадей останутся без работы. Но вместе с распространением двигателей внутреннего сгорания, появилось еще больше профессий. Телевидение не уничтожило радио, а открыло новые направления. Интернет значительно снизил объемы печатной продукции, но создал сотни высокотехнологичных специализаций.

Мир будет меняться, мы будем ворчать о том, как в старые добрые времена было лучше, но в конечном счете прогресс выйдет победителем.

Нам остается только следить за его шагом, наслаждаться плодами и присматривать работу погонщиков нейросетей. 

Иллюстрации в тексте: Markus «Braxxy» BrackelmannDavison Carvalho, Mark Chang
Арт в шапке: Diana Tsareva

Прочесть полную версию и оставить комментарий можно здесь.


В избранное