Отправляет email-рассылки с помощью сервиса Sendsay

Скорая математическая помощь

  Все выпуски  

Скорая математическая помощь # 25



СКОРАЯ МАТЕМАТИЧЕСКАЯ ПОМОЩЬ
Выпуск N25 от 30.12.2007

Подписчиков:377+352

Р ассылка о математике и информатике. Выходит еженедельно .
Ведущий рассылки:
Павел Страхов aka BrainMan , ICQ 415-145-675
Заместитель ведущего
: Ольга Киянова aka Inconel ICQ 455-198-168
Наши партнеры:
http://www.otvetov.net/ , http://www.softhome.ru/
E-mail рассылки (для всех писем):
matematics@mail.ru
Страница рассылки:
http://content.mail.ru/pages/p_26428.html
Архив рассылки:
http://content.mail.ru/arch/arch_26428.html
Сайт рассылки: в разработке
( http://algebra.jino-net.ru )
Математический форум: http://algebra.jino-net.ru/forum/
 
Слово автора  

Здравствуйте, уважаемые подписчики!

Сегодня Вы получили очередной выпуск рассылки о математике. Это последний в этом году выпуск для любителей этой прекрасной науки, поэтому хочу от всей души поздравить всех подписчиков с Новым годом,
пожелать всем счастья, удачи, успехов в учебе и работе, радости в Новом году, пусть исполнятся все Ваши мечты. Еще хочу поблагодарить за Ваши письма, решения, за отзывы и поддержку нашей рассылки, среди Вас я нашла новых друзей и единомышленников.
Несмотря на расстояние, разделяющее нас, рассылка позволяет объединяться вместе людям с общими интересами. В этом предновогоднем выпуске я решила не размещать задач из школьной программы, а также не включать раздел с новой темой для абитуриентов. Отдыхайте, решайте, интересные, логические задачи, читайте раздел юмора. С новым Годом! Следующий выпуск рассылки 12 января.

В нашем выпуске:

* Рейтинг участников

* Решение задач предыдущих выпусков

* Новые интересные задачи.

* Существует ли Дед Мороз?

* Юмор

 

Рейтинг

В рассылке проводится рейтинг активных подписчиков. Вы зарабатываете баллы, присылая задачи и решения. Баллы начисляются за присланные задачи (2 - 4 балла), решения задач (1 - 7 баллов, в зависимости от сложности задачи и правильности решения). 

Лидеры рейтинга
1. Павел Иванов 147баллов
2. Анатолий Безуглов 139 баллов
3. Wazovsky 65 баллов
4. Светлана 64 балла
5. Андрей Ерослаев 28 баллов
6. Юрий Иванов 21 балл

 

Решения задач

Если вы решили опубликованную задачу, присылайте свои решения , я их размещу в этом разделе. Вы можете решать и задачи, появившиеся в прошлых выпусках рассылки , решения будут опубликованы. Условия предыдущих задач можно найти в архиве рассылки. Почему мы стараемся разместить все решения? Рассматривая решения задач, можно убедиться, что способов решения может быть очень много, можно выбрать любой или наиболее рациональный способ.


Задача 124 Задача из выпуска 22 5 баллов

Касательная к графику функции у= V(2 - x) пересекает ось ординат в некоторой точке N так, что ОN =3/2, а ось абсцисс в точке Р так, что ОР = 3. Найти координаты точки касания.

Решения этой задачи раньше предложено не было

Решение
Решение Wazovsky (+5 баллов)

Необходимо сначала найти ур-е касательной, а затем, чтобы найти коодинаты точки касания, необходимо приравнять друг другу выражения функций.
Уравнение касательной у=3/2-х/2. Находится оно очень просто:
общий вид - у=k*x+b, b находится с помощью координат точки пересечения касательной с осью ординат(просто подставляем координаты в ур-е). Затем зная b находим k подставляя в это же ур-е координаты точки пересечения касательной и оси абцисс.
Теперь найдем искомые координаты:
3/2-х/2=V(2-х) возведем в квадрат обе части этого ур-я
при условии, что х<2(область определения для у= V(2 - x))

(V - квадратный корень, в скобках - выражение под корнем, мы с самого начала приняли такое обозначение, пока не будем менять)

1/4*(9-6*х+х2)=2-х
х2-2*х+1=0
х=1
у(1)=V(2 - 1)=1
Координаты точки пересечения: (1; 1)

Задача 126 Задача из выпуска 22 7 баллов

Сумма цифр двузначного числа равна 12. Если к этому числу прибавить36, то получится число, записанное теми же цифрами, но в обратном порядке. Найдите исходное число.

(решение Павла Иванова уже было в нашей прошлой рассылке,теперь предлагаю Вам решение Wazovsky (очень хорошее и подробное обьяснение))

Решение
Решение Wazovsky

запишем искомое число так: х*104 +у*103+z*102+t*10+v
тогда по условию задачи имеем:
(х*104)+(у*103)+(z*102)+(t*10+v)*9=(v*104)+t*103)+z*102)+у*10+х)

Порассуждаем:
нетрудно заметить, что если х больше 1, то при умножении на 9 получим 6-ти значное число,что нарушит условие задачи.
значит х=1. Тогда v может быть только 9, т.к. только 9*9 даст число единиц равное 1.
Т.к. v=9 и х=1, то видно, что переноса в старший разряд при умножении на 9 не было, т.е. у=1 или у=0.

При у=1 имеем остаток{(t*9+8);10}=у=1 (где запись остаток{х;у} означает, что берется остаток от деления х на у
а 8 - это перенос),
значит при умножении t на 9 получим число оканчивающееся на 3, отсюда t=7.
Далее t=у*9+n, n-перенос , 7=1*9+n при любом n равенство верно, т.к. переноса здесь не дожно быть
(иначе получим 6-ти значное число). Отсюда У=0 .
И в результате предыдущих рассуждений получаем t=8. t=у*9+n => n=8.
Осталось найти Z. Кстати можно перебрать все числа 10z89, умножая и на калькуляторе на 9, но это не интересно.
Лучше составим ур-е:
t*10+z=z*9+8 (8 - перенос) или 80+z=z*9+8 z=9

Ура! Расчет на калькуляторе подтвердил ответ: 10989

Задача 133 4 балла

Положительные числа х и у такие , что 3х + у = 10 . Найдите наибольшее значение выражения ху  

Решение

Решение Анатолия Безуглова(+1 балл)

Необходимо найти максимум функции f(x, y)=xy
Подставим у из приведенной формулы:
y = 10 - 3x
f(x, y) = xy = f(x) = x (10 - 3x) = -3x2 + 10x
Получили квадратное уравнение. Для нахождения экстремума (максимума)
находим производную функции:
f`(x) = -6x+10
Приравниваем производную к 0 и находим экстремум:
-6х+10=0
х0 =-10/6=-1,66(6)
у0 =10-3*(-10/6) = 10+50/6 = 110/6 = 18,33(3)
х00 = (-10/6)*(110,6) = -1100/36 = -30,55(5)

Ответ: максимального значения =-30,(5) функция достигает при х=-1,(6),
у=18,(3)
К сожалению, ответ неверный. Анатолий, Вы пропустили минус: -6х+10=0; потом пишите:х0 =-10/6=-1,66(6), надо: х0 =-10/-6=1,66(6) и дальше все пошло неверно

Решение Юрия Иванова ( +4 балла)

Особо не задумываясь можно сказать следующее:
а) имеем график убывающей линейной функции у = 10 - 3х
б) положительные х и у лежат в первой координатной четверти,
следовательно х принимает значения из интервала (0, 10/3), у - (0, 10)
в) 0<х<1 и 0<y<1 можно отбросить, потому что произведение ху х или у из
указанных интервалов меньше чем значение этого же произведения для х или
у = 1
значит х лежит в интервале [1, 3], y [1, 7]
Дальше особо рассуждать не хотелось, по старинке дедовским методом
(табличками) выясняем, что мах(ху) достигается при значениях х=5/3 у=5 и
мах(ху)=25/3

Решение Wazovsky :( +4 балла)

Выражаем у через х: у=10-3*х
Тогда надо найти наибольшее значение выражения (10*х - 3*x2)
Чтобы найти х, при котором это выражение максимально, надо взять производую от выражения и приравнять ее к нулю. Решение полученного ур-я и будет искомой х. Т.к. выражение простое и f(x)=10*x-3*x2 - описывает параболу, то искомое х можно найти как среднее арифметическое корней ур-я 10*x-3*x2=0 (х1=0, х2=10/3).
Итак х=5/3, а наибольшее значение выражения ху=х*(10*х-3*x2) = 5/3*(10- 3*5/3) = 25/3 = 8+1/3

Оба решения верны. Можно решить без нахождения производной, я бы предложила еще один вариант:

3х + у = 10; у = 10 – 3х; ху = х (10-3х) = -3 х2- 10/3 х = -3 ( х – 5/3 )2 + 25/3 <= 25/3 (<= меньше либо равно)
Ответ : наибольшее значение выражения 25/3
достигается при у = 5, х =5/ 3


Задача 134   5 баллов

 Решить уравнение
(х-7)*2 - |х - 7| = 30

 

Решение
Решение Юрия Иванова ( +1 балл)

Пусть х-7=t
Тогда ур-е примет вид
t2 - |t|= 30
Дальше классика
1. Для t>=0
Получаем t2 - t = 30, обратная теорема Виета дает нам t1 = -5, t2 = 6
первый корень опускаем ввиду условия 1. Получаем х-7=6, значит х=13
2. Для t<0
Получаем t2 + t = 30, обратная теорема Виета дает нам t3 = -6, t4 = 5
четвертый корень опускаем ввиду условия 2. Получаем х-7=-6, значит х=1

Юрий, как жаль, вы невнимательны,в первом слагаемом стоит умножение, а не возведение в степень (х-7)*2

Решение Wazovski :( +5 баллов)

ур-е можно преобразовать как объединение двух систем:
1-я система ур-й: х-7=30 при x-7>0
2-я система ур-й: 3*(x-7)=30 при x-7<0

Первая система дает решение х=37, а вторая не дает решений(х=17 при х<7).
В результате ответ х=37

Решение Андрея Ерослаева:( +5 баллов)

Так как уравнение с модулем, то модуль должен быть положителен, значит составим совокупность 2-ух систем:
{x>=7
{2(x-7)-x+7=30
и
{x<7
{2(x-7)+x-7=30
Решим:
{x>=7
{2x-14-x+7=30
и
{x<7
{2x-14+x-7=30

{x>=7
{x=37
и
{x<7
{x=17

но x=17 не удовлетворяет, т.к. x должен быть меньше 7, а 17>7, а
x=37 удовлетворяет условию, т.к. 37>7 (верно)
Ответ: x=37

Задача 135   5 баллов

  Саша и Сережа дважды обменивались марками, причем каждый раз 1/7 количества марок , имевшихся ( на момент обмена) у Саши, обменивалась на половину количества марок, имевшихся у Сережи. Сколько марок было у Саши и сколько у Сережи до первого обмена, если после первого обмена у Саши было 945 марок, а после второго обмена у Сережи - 220?

 

Решение
Решение Юрия Иванова (+5 баллов)

Саша и Сережа дважды обменивались марками, причем каждый раз 1/7
количества марок , имевшихся ( на момент обмена) у Саши, обменивалась на
половину количества марок, имевшихся у Сережи. Сколько марок было у Саши
и сколько у Сережи до первого обмена, если после первого обмена у Саши
было 945 марок, а после второго обмена у Сережи - 220?
Пусть у Саши было Х марок, у Сережи У марок
После первого обмена у Саши стало
Х-1/7*Х+1/2*У, что составило 945 марок
После второго обмена у Сережи стало
1/2*(1/2*У+1/7*Х)+1/7*(6/7*Х+1/2*У)=220
Получили систему
6/7*Х+1/2*У=945
1/2*(1/2*У+1/7*Х)+1/7*945=220
Путем нехитрых манипуляций получили Х = 1085, У = 30

Решение Wazovsky(+5 баллов)

Пусть у Саши и Сережи было по х и у марок соответственно
Составим систему ур-й:
6/7*х+у/2=945 (кол-во марок после первого обмена у Саши)
1/2*(у/2+х/7)+1/7*(6/7*х+у/2)=220(кол-во марок после второго обмена у Сережи), умножив первое ур-е на 14 получим 12*х+7*у=13230
умножив второе ур-е на 142=196 получим 38*х+63*у=43120
Далее, умножив первое ур-е на 9 и вычти из него второе, найдем х=1085. Путем подстановки х в любое ур-е находим у=30
Ответ: у Саши было 1085 марок, а у Сережи 30.

Решение Анатолия Безуглова (+5 баллов)

Обозначим через х - количество марок до первого обмена у Саши, а через у
- у Сережи

Тогда после первого обмена у Саши будет:
(6/7)х + (1/2)у = 945
У сережи после первого обмена станет:
(1/7)х+(1/2)у

После второго обмена у Саши:
(6/7)*945 + 0,5((1/7)х+(1/2)у)
У Сережи после второго обмена:
(1/7)*945 + 0,5((1/7)х+(1/2)у) = 220
Здесь я сразу подставил 945, а не формулу из первого обмена, так нам уже
известно сколько было после первого обмена у Саши.
Второе уравнение перепишем в виде:
135 + х/14 + у/4 = 220
х/14 + у/4 = 85

Теперь можем записать систему уравнений:
(6/7)х + (1/2)у = 945
х/14 + у/4 = 85
Мне не нравится решать уравнения с дробями, потому я умножил верхнее
уравнение на 14, а нижнее на 28.
12х + 7у = 13230
2х + 7у = 2380
Вычтя нижнее уравнение из верхнего:
10х = 13230 - 2380 = 10850
х = 1085
Теперь подставляем известное х в одно из уравнений:
2*1085 + 7у = 2380
7у = 2380 - 2170 = 210
у = 30

Ответ: до первого обмена у Саши было 1085 марок, а у Сережи 30 марок.

Задача 136   5 баллов

Двое путников одновременно вышли из пункта А по направлению к пункту В.
Шаг второго был на 20% короче, чем шаг первого, но зато второй успевал за то же время сделать на 20% шагов больше, чем первый

 

Решение
Решение Юрия Иванова (+5 баллов)

Задача достаточно простая. Необходимо только составить пропорцию
Пусть длина шага 1-го путника l1, для второго длина шага составит l1 * 0,8
Количество шагов 1-го путника n1 в час, для второго эта величина
составит 1,2*n1
Расстояние между пунктами А и В S км
Тогда время затраченное 1-м путником составит S/(l1*n1)=5 часов
Время затраченное вторым путником составит S/(0,8*l1*1,2*n1)=Т2, отсюда
следует, что S/(l1*n1)=Т2 * 1,2 * 0,8, значит Т2 = 5/0,96 приблиз. 5,2
часа (5 часов 12 мин 30 сек)

Решение Wazovsky (+5 баллов)

За 5 часов первый путник сделал N шагов длинной L, тогда второй путник за это же время сделает 1,2*N шагов длинной 0,8*L. Т.к. оба путника прошли одно и то же расстояние, то:
5*N*L=x*1,2*N*0,8*L (где х время, которое потратил 2-й путник)
Получаем х=125/24=5+5/24 или 5ч 12мин 30сек.

Решение Анатолия Безуглова (+5 баллов)

Опять задачи из области физики.

Так как шаг второго путника 20% короче, но шагает он в на 20% чаще, то
очевидно его скорость будет 0,8*1,2=0,96 от скорости первого.
Тогда на тот же путь он потратит времени 5/0,96 = 5,208(3) часа.
Более строгий вариант решения.
Для начала установим соотношения между скоростями путников.
Рассмотрим путь котрый пройдут путники за время t:
Первый путник пройдет расстояние: s1=n1*l1*t, где n1 - количество шагов,
который сделает первый путник за единицу времени, l1 - размер шага
первого путника.
Второй путник пройдет: s2=n2*l2*t
Тогда их скорости:
v1=s1/t=n1*l1
v2=s2/t=n2*l2
Из условия задачи известно, что:
n2=1,2n1
l2=0,8l1
Тогда можем записать
v2=1,2n1*0,8l1=1,2*0,8*n1*l1=0,96v1
Получили то же соотношение скоростей про которое говорили вначале,
только более строгим способом.
Теперь посмотрим сколько времени потратит на путь от пунта А до пункта В
(обозначим его АВ) каждый из путников:
Первый путник:
t1=AB/v1=5 часов - это известно по условию
второй
t2=AB/v2=AB/(0,96*v1)=(1/0,96)*(AB/v1)=t1/0,96=5/0,96=5,208(3) часа
Получили то же самое, но данное решение является более строгим и точным.

Задача 137 Задача из старинных рукописей 6 баллов

 Раздел наследства

Деньги, оставшиеся после смерти купца, были разделены по завещанию между его сыновьями. Старший сын получил 100 рублей и 1/6 остатка. Вслед за за ним второй сын получил 200 рублей и 1/6 остатка. Затем третий сын получил 300 рублей и 1/6 остатка и так далее до последнего его сына, который получил все, что осталось после старших братьев. В результате оказалось, что все сыновья получили денег поровну. Сколько было сыновей и какова сумма наследства?

 

Решение
 

Решение Юрия Иванова (+6 баллов)

Для решения задачи о наследстве достаточно знать про первых двух сыновей
Итак отец оставил сумму денег Р для своих К сыновей
Первый получил 100 р и 1/6 остатка, то есть Р1 = 100 + 1/6 * (Р-100)
Второй получил 200 р и 1/6 остатка, то есть Р2 = 200 + 1/6 * (Р - Р1 - 200)
Сыновья получили денег одинаковую сумму, т.е. Р12
100 + 1/6 * (Р-100)=200 + 1/6 * (Р - 100 - 1/6 * (Р-100) - 200)
1/6 * (Р - 100 - Р + 300 + 1/6 * (Р-100))=100
200 + 1/6 * (Р - 100) = 600
Р - 100 = 2400
Р = 2500
Каждый получил по 500 р
сыновей было 5

Решение Wazovsky (+6 баллов)

Обозначим сумму наследства как х, а кол-во сыновей как N.
Тогда первый сын получил в наследство х1=100+(х-100)/6,
второй - х2=200+(х-х1-200)/6 и х12. Отсюда:
100+(х-100)/6=200+{х-100-200-(х-100)/6}/6 или
3600+6*х-600=7200+6*x-600-1200-х+100 х=2500
х1=100+(2500-100)/6=500 N=x/x1
Ответ:купец поровну поделил наследство в 2500р между 5-ю сыновями.

Решение Анатолия Безуглова (+3 балла)

Обозначим через х сумму наследства, тогда мы можем записать, что каждый
из сыновей получил следующую сумму:
100+х/6 = 200+(х-(100+х/6))/6 = 300+(х-(200+(х-(100+х/6))/6))/6 = ...
Отсюда можно найти х:
100+х/6 = 200+(х-(100+х/6))/6
Для начала избавимся от дроби - умножим левую и правую части на 6:
600+х=1200+х-(100+х/6)=1100+х-х/6
Перенеся все х в одну сторону, а постоянные члены в другую:
х/6=500
х=3000 рублей - размер наследства.
Тогда первый сын получит:
100+3000/6=600 рублей. Останется 2400 рублей
второй сын: 200+2400/6=600 рублей. Остаток 1800
третий сын: 300+1800/6=600 рублей и т.д.
Так как известно что каждый наследник получил одинаковую сумму = 600
рублей, то легко найти и их количество разделив общую сумму наследства
на сумму причитающуюся каждому сыну:
3000/600 = 5

Ответ: всего сыновей было 5, общая сумма наследства 3000 рублей, каждый
получил по 600 рублей.

Анатолий, рассуждения правильные. но в решении опять неточность, проверьте!

 

Новые задачи

Адрес для решений: matematics@mail.ru

 

Если у вас есть интересные задачи или вы просто не можете решить нужную вам задачу, присылайте ее в рассылку, решим вместе! Сегодня нам прислал задачу № 138 Денис Шевченко (+3 балла) попробуйте решить. ВНИМАНИЕ! В честь Нового Года в этом выпуске за решение любой задачи 7 баллов !


Задача 138 задача Дениса Шевченко 7 баллов

Пловец плывёт в бескрайнем водоёме с постоянной скоростью V по гладкой замкнутой траектории в течение времени Т. В водоёме течение постоянного направления и постоянной скорости W. Какое максимальное расстояние проплывёт пловец за время Т ,при условии, что движение начинается и заканчивается в одной точке? По какой траектории?
 

Задача 139 7 баллов

Дети играли в игру, в которой нужно угадать число, находящееся в группе чисел.
Они задумали число между 1 и 300 (1 и 300 входят в число задуманных).
Трое ребят сделали следующие утверждения относительно "секретного" числа:

(А) Антон: это число между 1 и 100;

(Б) Борис: это число не между 101 и 200;

(В) Володя: это число не между 1 и 100;

Но двое из этих мальчиков признались вскоре, что они сказали неправду.


В каком интервале находится "секретное" число?

(a) от 1 до 100; (b) от 101 до 200; (c) от 201 до 300;

(d) от 101 до 300; (e) Невозможно определить


 
Задача 140 7 баллов

Остатки от деления 5-ти значного числа abcde при его делении на 2, 3, 4, 5, и на 6 равны : a, b, c, d, и e, в том же самом порядке.

Найдите это число и скажите, какая цифра спряталась за буквой b, если под разными буквами спрятались не обязательно разные цифры ?

 

Задача 141 7 баллов

Василию, Петру, Семену и их женам Наталье, Ирине, Анне вместе 151 год.
Каждый муж старше своей жены на 5 лет. Василий на 1 год старше Ирины.
Наталье и Василию вместе 48 лет, Семену и Наталье вместе 52 года.
Кто на ком женат, кому сколько лет? (Возрасты должны быть выражены в целых числах.)
 

Задача 142   7 баллов

Встречаются два математика. Один спрашивает у другого:
- Я знаю, у тебя три дочери. Сколько им лет?
- Если перемножить количество лет моих дочерей, то получится 72, а если сложить - получится номер вон того дома.
- Но этих данных недостаточно.
- Да. Старшая дочь играет на пианино.

Сколько лет дочерям?

 
статья

Существует ли Дед Мороз?
Статистика точно знает, сколько мегалитров шампанского будет выпито за дни праздников, сколько конфет съедено, сколько подарков получит ребятня и сколько хлопушек взорвется в Новогоднюю ночь. Но есть люди, которые умеют не только внимательно вчитаться в итоговые цифры статистов, но и посмотреть на положение вещей с реалистической точки зрения. Американцы Джоэль Потишмен и Брюс Хенди взглянули трезвым взглядом на подготовку Нового Года, провели глубокое исследование, произвели сложные расчеты, сделали из всего этого выводы...
и представили на суд мировой общественности серьезный труд, в котором (представьте себе!) ставится под сомнение само существование Деда Мороза (пусть он даже Санта-Клаус)!!!

И вот что получается

Все знают, что Санта Клаус появляется в новогоднюю ночь на санях, запряженных оленем, который передвигается исключительно по воздуху. Но ни один из известных видов северных оленей не летает. Однако существует 300 000 видов живых организмов, которые ещё не подвергались классификации и нам не известны их названия, правда большинство из них насекомые и микроорганизмы. И это не исключает возможность существования летающих оленей, которых видел только Санта Клаус.

Как известно Санта Клаус дарит подарки детям. На Земле проживает 2 млрд. детей, не считая тех, кто уже достиг 18 лет. Но поскольку Санта приходит только к католикам, из списка исключаются православные, мусульмане, иудеи, буддисты и кришнаиты, т.е. остается 15% от общего количества. А это, если верить статистике, — 378 миллионов детей. В среднем, по той же статистике, на одну семью приходится 3,5 ребенка — это 91,8 миллионов домов. И в каждом доме предположительно есть хоть один ребенок, который хорошо себя ведет.
Ведь Санта Клаус дарит подарки только тем, кто на протяжении всего года отличался хорошим поведением.

Если предположить, что Санта Клаус двигается с востока на запад, то его рабочий день длится 31 час, (благодаря часовым поясам и вращению Земли). Чтобы успеть посетить всех, Санта Клаус должен совершать 822,6 визита в секунду. Это значит, что на посещение каждой католической семьи с хорошим ребенком у Санты есть 0,001 секунды. И за это время, следуя новогодним традициям, он должен:
-припарковать оленя
-вылезти из саней
-запрыгнуть в дымоход
-накидать подарки под елку
-съесть угощение, которое ему оставили
-вылезти из дымохода
-залезть в сани и поехать в следующий дом.

Можно предположить, что эти 91,8 миллионов остановок равномерно распределены по поверхности земли, (что, как известно, не соответствует истине), но подойдет для дальнейших расчетов. Выходит по 1,15 км между каждым домом, а общая протяженность пути составляет около 113, 25 млн. км, не считая остановок на то, что обычно делают хотя бы раз за 31 час (типа поесть, попить и т.д.). Это значит, что сани Санта Клауса двигаются со скоростью 970 км/сек, а это в 3000 раз больше скорости звука. (Самый быстрый механизм созданный человеком — космический зонд Уллис, двигающийся со скоростью 40 км/сек, буквально тащится по сравнению с санями Санты. А обычный, не перелетный, олень, вообще бегает со скоростью 25 км/ч и то, если его сильно напугать).

А теперь о подарках, которыми загружены сани Санта Клауса. Предположим, что каждый ребенок получает в подарок стандартный конструктор (весом около 1 кг), в таком случае на санях размещены 321 300 тонн груза, не считая самого Санта Клауса, которого обычно описывают, как толстяка внушительных размеров. При этом на земле обычный олень сдвигает не более 150 кг. И даже если летающий олень может перемещать в 10 раз больше, то Санта не может поднять весь груз, используя восемь или даже девять оленей. Для этого ему понадобится 214 200 оленей. Это автоматически увеличивает общий вес упряжки до 353 430 тонн.

А теперь самое главное: 353 000 тонн, летящие со скоростью 970 км/сек, испытывают просто огромное сопротивление воздуха, из-за которого упряжка нагревается, как космический корабль, входящий в земную атмосферу. Первые два оленя в упряжке сразу поглотят 14,3 квинтильонов джоулей энергии. Причем каждый. Причем в секунду. В общем, сгорят они практически мгновенно, так же как и остальные олени за ними. Все это будет сопровождаться оглушительными взрывами. Вся упряжка из 214 200 оленей превратится в пепел за 4,26 тысячных долей секунды. В это же время, на Санта Клауса будут действовать центробежные силы в 17 500,06 превышающие силу притяжения. И добрый старичок-толстячок Санта Клауса весом в 120 кг (что смехотворно мало для такого упитанного типа) будет просто пригвожден к спинке своих же саней двумя миллионами килограммов веса.
Так что, дорогие друзья, нас призывают ещё раз подумать, прежде чем обрушивать на неокрепшие детские души такой поток вымышленной информации. Потому что, как заключили исследователи, «Если бы Санта-Клаус и существовал на самом деле, исходя из приведенных данных, он давно бы умер».

Не знаю, как там их — Санта-Клаус, а наш Дед Мороз — дедок крепкий. Все равно он к нам придет, одолеет все наши семь часовых поясов и разложит подарки под наши елочки.

по материалам http://www.proverenodm.ru

 
 

ЮМОР

   

***

Интересные задачи

Уважаемый Иван Иванович!

На Вашу просьбу увеличить Вам зарплату вынуждены ответить отказом, поскольку Вы и нынешнюю не
заработали. Считайте сами.

В году 365 дней. Вы спите 8 часов в день, то есть 122 дня. Остается 243 дня. У Вас есть в среднем 7 часов свободного времени в день,
то есть 106 дней. Остается 137 дней.
В году 52 воскресенья. Остается 85 дней. Так как Вы не работаете еще и в субботу, вычитаем еще 52 дня.
Остается 33 дня. Также вычтите
3 недели ежегодного отпуска, т. е. еще 21 день. Остается 12 дней. В году 11 праздничных дней.
Остается единственный день на работу,
но Вы были на больничном. А посему…

***

Юзер Вася Чайников решил приобрести себе компьютер. Hовый компьютер стоит в фирме 1000 у.е. Hо, поскольку у Васи уже был блок питания, он решил докупить остальное и собрать компьютер самостоятельно. Он купил материнскую плату за 100 у.е., процессор за 200 у.е., винчестер за 150 у.е и монитор за 300 у.е. Сколько у.е. сэкономил Вася Чайников, если на третьей секунде работы его блок питания сжег все остальные комплектующие?

Программист Сидоров познакомился в чате с Катей, которой 16 лет, и
попросил прислать её фотку. Катя знает только формат ВМР и её фотка весит 16МВ,
а у Сидорова коннект на 2400, при этом связь прерывается каждые 20 минут
, а дозвон после этого составляет 3 минуты, льготный тариф действует с 3.00 до 6.00.
Вопрос:
Сколько лет будет Кате, когда программист Сидоров докачает её фотку?

Юзер Вася Чайников узнал, что у хакера Вовы Крутого появился новый CD-ROM с пиратской игрой. Поскольку у Васи нет CD-ROM дисковода, он решил скопировать себе игру с помощью дискет. Объем игры 750 мегабайт, объем дискеты 1.44 мегабайт, а всего у Васи 10 дискет. Путь от дома Чайникова до дома Крутого занимает полчаса. Сколько времени потратит Вася, прежде чем обнаружит, что игра запускается только при наличии CD-ROMа?

***

С другой стороны, если предположить, что Дед мороз является фольклорным элементом, символизирующим скорее не обобщенный собирательный образ некоего доброго дяди, приходящего раз в год, а некое природное явление, присущее нашему миру де факто - скажем как смену дня и ночи, то допустимо будет рассмотреть его действия так же, как и обычный энергетический процесс. В этом случае, синтез подарков для 91,8 млн детей, при вводных данных в виде подарка - конструктор lego (около 1 кг). Рассматриваем процесс получения материи из энергии. Данные для анализа: знаменитая E=M*СC, Время отпущенное на синтез нам также известно, 31 час, то есть 31*60*60=111600, Итак, 91800000*1000гр*111600сек=10244880000000000 это и есть энергия, в Дж, идущая на синтез указанного количества материи. Учитывая, что за то же время солнце излучает на землю 6279527953568350 джоулей получается, что ежегодный дефицит энергии составляет 3965352046431650 джоулей, учитывая что традиция Рождества составляет около 2000 лет можно с уверенностью считать, что мы бы давно замерзли....
Слушай, Вась, по моему нам предки голову морочат... НЕТУ НИКАКОГО ДЕДА МОРОЗА!

Анекдоты

***

Конец декабря. Лекции в институте. Преподаватель: "Мы не успели разобрать важную тему. Поэтому устраиваем дополнительное занятие." Открывает ежедневник, близоруко щурясь, вчитывается в записи: "Та-а-ак... Вот у меня свободен вечер 30 декабря, и утро 31. Какой день выберите?"
Практически все студенты дружно, хором: "А давайте, 31-ого вечером!!! :) "
Преподаватель (на полном серьезе): "Одну минуточку... Сейчас посмотрю, что у меня на вечер 31 декабря спланировано..."

***

Негp после учебы в России возвращается к себе на родину. Обступившие прибывшего соплеменники допытываются:
- Hy , как тебе знаменитая русская зима?
- Та, которая с травой и листьями, еще терпимо. А та, что со СНЕГОМ - просто кошмар какой-то!..

***

31 декабря. Звонит ребенок:
- Але, скорая? Приезжайте скорее. Наш папа с ума сошел. Надел красный халат, валенки и всем говорит, что он Дед Мороз


 
 

Информация

По всем интересующим вас вопросам обращайтесь на e-mail

Призываю Вас к сотрудничеству. Если у Вас есть свой сайт или рассылка, вы можете разместить там ссылку на мой сайт и форму подписки на мою рассылку. Я же размещу ссылку на Ваш ресурс в разделе ссылок своего сайта и в рассылке. Чтобы уточнить условия, напишите мне письмо.
Если вам нравится эта рассылка, посоветуйте ее друзьям - чем больше подписчиков, тем интереснее и активнее процесс решения задач. Если у вас возникли какие-либо проблемы с использованием рассылки, пишите мне на e-mail: matematics@mail.ru или воспользуйтесь формой обратной связи на странице рассылки.
Участвуйте активнее! Помогите развитию рассылки!
С радостью приму замечания и пожелания к дизайну и содержанию рассылки.

Спасибо за внимание!


В избранное