Отправляет email-рассылки с помощью сервиса Sendsay
  Все выпуски  

RusFAQ.ru: Дискретная математика


Хостинг Портала RusFAQ.ru:
MosHoster.ru - Профессиональный хостинг на Windows 2008

РАССЫЛКИ ПОРТАЛА RUSFAQ.RU

Чемпионы рейтинга экспертов в этой рассылке

Botsman
Статус: Студент
Рейтинг: 200
∙ повысить рейтинг >>
Lang21
Статус: Практикант
Рейтинг: 133
∙ повысить рейтинг >>
Baybak
Статус: 10-й класс
Рейтинг: 125
∙ повысить рейтинг >>

/ НАУКА И ОБРАЗОВАНИЕ / Точные и естественные науки / Дискретная математика

Выпуск № 106
от 28.04.2009, 23:35

Администратор:Alexey G. Gladenyuk
В рассылке:Подписчиков: 90, Экспертов: 12
В номере:Вопросов: 1, Ответов: 1

Нам важно Ваше мнение об этой рассылке.
Оценить этот выпуск рассылки >>

Вопрос № 165652: помогите с математикой пожалуйста..))) 1)В лаборатории приготовлено для испытания на прочность 10 образцов.Вероятность того,что каждый из них будет подвергнут необратимой деформации(т.е. будет разрушен) при максимальной нагрузке,равна 0,4. Лаборан...


Вопрос № 165.652
помогите с математикой пожалуйста..)))
1)В лаборатории приготовлено для испытания на прочность 10 образцов.Вероятность того,что каждый из них будет подвергнут необратимой деформации(т.е. будет разрушен) при максимальной нагрузке,равна 0,4. Лаборант до основного испытания решил проверить образцы при уменьшенной в два раза нагрузке.Вероятность того, что образец при этом испытании будет разрушен,равна 0,1.Найти вероятность того,что после двух испытаний(предварительного и основного) хотя бы один образец будет разрушен.

2)студент сдаст экзамен(событие А),если он правильно ответит на два вопроса из билета(событие В1 и В2) и решит адачу (событие С), и если он правильно ответит на один из вопросов билета (В1 и В2), решит задачу и ответит на один дополнительный вопрос(событие Д).Найти множество всех элементарных исходов данного опыта. Выразить событие А в поле событий через соответствующие ему элементарные исходы.

3)В партии из 20 приборов имеется 3 неисправных.масте р выбирает наудачу и проверяет один за другим 5 приборов.Какова вероятность того,что при этом ни один из неисправных приборов не будет обнаружен?

4)Брошено три монеты. Предпологая,что все элементарные исходы равновероятны,найти вероятность событий: А=(первая монета выпала гербом вверх);В = (выпало ровно два герба);С = (выпало не более двух гербов).

Заранее спасибо!!)))
Отправлен: 23.04.2009, 10:18
Вопрос задала: Дуглас Наталия Алексеевна (статус: Посетитель)
Всего ответов: 1
Мини-форум вопроса >>> (сообщений: 1)

Отвечает: Копылов Александр Иванович
Здравствуйте, Дуглас Наталия Алексеевна!


3)В партии из 20 приборов имеется 3 неисправных.маст! ер выбирает наудачу и проверяет один за другим 5 приборов.Какова вероятность того,что при этом ни один из неисправных приборов не будет обнаружен?
Задача на Гипергеометрическое распределение.

P = (С(3,0)*С(17,5)/С(20,5) = 0,399123

4)Брошено три монеты. Предпологая,что все элементарные исходы равновероятны,найти вероятность событий: А=(первая монета выпала гербом вверх);В = (выпало ровно два герба);С = (выпало не более двух гербов).

P(A) = 0,5

Схема Бернулли:
P(B) = C(n,k)* p**k *(1-p)**(n-k) = C(3,2)* 0,5**2 *0,5**1 = 0,375

P(C) = P(0 гербов)+ P(1 герб)+ P(2 герба) = P(0 гербов)+ P(1 герб)+ P(B) =
= C(3,0)* 0,5**0 *0,5**3 + C(3,1)* 0,5**1 *0,5**2 + 0,375 = 0,125 + 0,375 + 0,375 = 0,875
Ответ отправил: Копылов Александр Иванович (статус: Студент)
Ответ отправлен: 23.04.2009, 14:14

Как сказать этому эксперту "спасибо"?
  • Отправить SMS #thank 248106 на номер 1151 (Россия) | Еще номера >>
  • Отправить WebMoney:
  • Вам помогли? Пожалуйста, поблагодарите эксперта за это!


    Вы имеете возможность оценить этот выпуск рассылки.
    Нам очень важно Ваше мнение!
    Оценить этот выпуск рассылки >>

    Отправить вопрос экспертам этой рассылки

    Приложение (если необходимо):

    * Код программы, выдержки из закона и т.п. дополнение к вопросу.
    Эта информация будет отображена в аналогичном окне как есть.

    Обратите внимание!
    Вопрос будет отправлен всем экспертам данной рассылки!

    Для того, чтобы отправить вопрос выбранным экспертам этой рассылки или
    экспертам другой рассылки портала RusFAQ.ru, зайдите непосредственно на RusFAQ.ru.


    Форма НЕ работает в почтовых программах The BAT! и MS Outlook (кроме версии 2003+)!
    Чтобы отправить вопрос, откройте это письмо в браузере или зайдите на сайт RusFAQ.ru.

    Скажите "спасибо" эксперту, который помог Вам!

    Отправьте СМС-сообщение с тестом #thank НОМЕР_ОТВЕТА
    на короткий номер 1151 (Россия)

    Номер ответа и конкретный текст СМС указан внизу каждого ответа.

    Полный список номеров >>

    * Стоимость одного СМС-сообщения от 7.15 руб. и зависит от оператора сотовой связи. (полный список тарифов)
    ** При ошибочном вводе номера ответа или текста #thank услуга считается оказанной, денежные средства не возвращаются.
    *** Сумма выплаты эксперту-автору ответа расчитывается из суммы перечислений на портал от биллинговой компании.


    © 2001-2009, Портал RusFAQ.ru, Россия, Москва.
    Авторское право: ООО "Мастер-Эксперт Про"
    Техподдержка портала, тел.: +7 (926) 535-23-31
    Хостинг: "Московский хостер"
    Поддержка: "Московский дизайнер"
    Авторские права | Реклама на портале

    ∙ Версия системы: 5.13 от 01.12.2008

    Яндекс Rambler's Top100
    RusFAQ.ru | MosHoster.ru | MosDesigner.ru
    RusIRC.ru | Kalashnikoff.ru | RadioLeader.ru

    В избранное