Отправляет email-рассылки с помощью сервиса Sendsay

Математический кружок

  Все выпуски  

Математический кружок


Занятие 3. Круги Эйлера

В выпуске используются картинки, расположенные на сервере mathclub.zaba.ru, поэтому его лучше читать в броузере,подключившись к интернету.

Теория

Разберём задачу 13.

13 Из 100 туристов, отправляющихся в заграничное путешествие, немецким языком владеют 30 человек, английским - 28, французским - 42. Английским и немецким одновременно владеют 8 человек, английским и французским - 10, немецким и французским - 5, всеми тремя языками - 3. Сколько туристов не владеют ни одним языком?

Выразим условие этой задачи графически. Обозначим кругом тех кто знает английский, другим кругом - тех, кто знает французский, и третим кругом - тех, кто знают немецкий. Тогда, например, те, кто владеет и английским и немецким, "попадут" в общую часть первого и третьего круга.

\begin{figure}\beginpicture
\circulararc 360 degrees from 60 50 center at 110 50...
 ...0
\put{Французский} at 150 10
\put{Немецкий} at 20 10
\endpicture\end{figure}

Всеми тремя языками владеют три туриста, значит, в общей части кругов вписываем число 3. Английским и французским языками владеют 10 человек, а 3 из них владеют еще и немецким. Следовательно, только английским и французским владеют 10-3=7 человек.

Аналогично получаем, что только английским и немецким владеют 8-3=5 человек, а немецким и французским 5-3=2 туриста. Вносим эти данные в соответствующие части.

\begin{figure}\beginpicture
\circulararc 360 degrees from 10 50 center at 60 50
 ...
 ... 160
\put{Немецкий} at 20 10
\put{Французский} at 150 10
\endpicture\end{figure}

Определим теперь, сколько человек владеют только одним из перечисленных языков. Немецкий знают 30 человек, но 5+3+2=10 из них владеют и другими языками, следовательно, только немецкий знают 20 человек. Аналогично получаем, что одним английским владеют 13 человек, а одним французским - 30 человек.

\begin{figure}\beginpicture
\circulararc 360 degrees from 10 50 center at 60 50
 ...
 ...0
\put{Французский} at 150 10
\put{Английский} at 82 160
\endpicture\end{figure}

По условию задачи всего 100 туристов. 20+13+30+5+7+2+3=80 туристов знают хотя бы один язык, следовательно, 20 человек не владеют ни одним из данных языков.

Ответ: только английским владеет 13 человек, только французским - 30, только немецким - 20 человек. 20 человек не знают ни одного из этих языков.

Задачи на круги Эйлера

Задача 16. Про учеников школы, которые участвовали в физико-математическом конкурсе, известно, что 7 из них справились с задачами и по математике и по физике, 11 из них справились с задачами по математике, 9 из них справились с задачами по физике. Сколько учеников принимали участие в конкурсе?

Задача 17. В одной семье было много детей. 7 из них любили капусту, 6 - морковь, 5 - горох, 4 - капусту и морковь, 3 - капусту и горох, 2 - морковь и горох, один - и капусту, и морковь, и горох. Сколько детей было в семье?

Задача 18. На полу комнаты площадью 24 м2 лежат три ковра. Площадь одного из них - 10 м2, другого - 8 м2, третьего - 6 м2. Каждые два ковра перекрываются по площади 3 м2, а площадь участка пола, покрытого всеми тремя коврами, составляет 1 м2. Найдите площадь участка пола: а) покрытого первым и вторым коврами, но не покрытого третьим ковром; б) покрытого только одним первым ковром; в) не покрытого коврами.

Задача 19. На спортивные соревнования в Летней математической школе ходили 220 школьников. При этом некоторые из них участвовали в чемпионатах, а остальные были зрителями. В легкоатлетической эстафете приняли участие 30 человек, в соревнованиях по волейболу - 26, пионерболу - 32, футболу - 31, шахматам - 28 и теннису - 36 человек. 53 школьника приняли участие более чем в одном соревновании; из них 24 школьника участвовали 3 или более раз, 9 школьников - не менее 4 раз и 3 школьника - даже 5 раз (в последнюю тройку входит и один чудак, который выступал во всех шести соревнованиях). Сколько школьников были зрителями?

Разнобой

Задача 20. Дано 6 гирь: две зеленых, две красных, две синих. В каждой паре одна гиря тяжелая, а другая легкая, причём все тяжелые гири весят одинаково и все легкие тоже. Можно ли за 2 взвешивания на чашечных весах найти все тяжелые гири?

Задача 21. На плоскости расположено 11 шестерёнок, соединенных в кольцо. Могут ли все шестерёнки вращаться одновременно?




В избранное