Отправляет email-рассылки с помощью сервиса Sendsay
  Все выпуски  

Большая советская энциклопедия и К


Здравствуйте!

Вас приветствует автор рассылки Литвинов Александр.

Сегодня разговор о Менделееве из БСЭ-3.

МЕНДЕЛЕЕВ Дмитрий Иванович [27.1 (8.2).1834, Тобольск,- 20.1 (2.2).1907, Петербург], русский химик, открывший периодич. закон хим. элементов, разносторонний учёный, педагог и обществ, деятель.

М.- сын И. П. Менделеева (1783-1847), директора Тобольской гимназии. Высшее образование М. получил на отделении естеств. наук физ.-матем. ф-та Главного педагогического института в Петербурге, курс к-рого окончил в 1855 с золотой медалью. В 1856 защитил в Петерб. ун-те магистерскую диссертацию; с 1857 в качестве доцента читал там же курс органич. химии. В 1859-61 М. был в научной командировке в Гей-дельберге, где подружился со многими находившимися там учёными, в том числе с А. П. Бородиным и И. М. Сеченовым. Работал в своей небольшой домашней лаборатории, а также в лаборатории Р. Бунзена в Гейдельбергском ун-те. В 1861 опубликовал учебник "Органическая химия", удостоенный Петерб. АН Демидовской пр. В 1864-66 проф. Петерб. технологич. ин-та. В 1865 защитил докторскую диссертацию "О соединении спирта с водой" и тогда же был утверждён проф. Петерб. ун-та. В 1876 избран чл.-корр. Петерб. АН, но кандидатура М. в академики была в 1880 отвергнута "...противодействием темных сил, которые ревниво закрывают двери Академии пред русскими талантами" (из письма профессоров Моск. ун-та, цит. по кн.: Бутлеров А. М., Соч., т. 3, 1958, с. 128). Забаллотирование М. Петерб. АН вызвало резкий протест общественности в России и за рубежом.

Во время происходивших в 1890 сту-денч. волнений М. передал министру нар. просвещения И. Д. Делянову петицию студенческой сходки с пожеланиями дать автономию ун-ту и отменить полицейские функции инспекции. Делянов вернул М. петицию, в ответ М. тотчас же подал прошение об отставке. В 1890-1895 состоял консультантом Науч.-тех-нич. лаборатории Морского мин-ва. В 1890 изобрёл новый вид бездымного пороха ("пироколлодий") и в 1892 организовал его произ-во. В 1892 М. назначен учёным хранителем Депо образцовых гирь и весов, преобразованного по его инициативе в Главную палату мер и весов (1893; ныне Всесоюзный н.-и. нн-т метрологии им. Д. И. Менделеева). Её управляющим (директором) М. оставался до конца жизни.

Науч. деятельность М. чрезвычайно обширна и многогранна. Среди его печатных трудов (более 500) - фундаментальные работы по химии, хим. технологии, физике, метрологии, воздухоплаванию, метеорологии, с. х-ву, по вопросам экономики, нар. просвещения и мн. др. "Сам удивляюсь, чего только я не делывал на своей научной жизни. И сделано, думаю, недурно",- писал в 1899 М. (Соч., т. 25, 1952, с. 714).

В студенч. годы М. получил подготовку по химии у А. А. Воскресенского, по высшей математике-у М. В. Остроградского и по физике-у Э.Х.Ленца. Прекрасное владение методами математики и физики, применение их к разрешению хим. проблем существенно отличает М. от большинства выдающихся химиков его времени.

Уже на первых порах науч. работы гл. внимание М. привлекают соотношения между составом, физ. свойствами и формами хим. соединений. В выпускной диссертации "Изоморфизм в связи с другими отношениями кристаллической формы к составу" (1856; Соч., т. 1, 1937) он делает попытку классифицировать химические элементы по кристаллич. формам их соединений, а в магистерской диссертации "Удельные объёмы" (1856; Соч., т. 1, 1937, т. 25, 1952) пользуется с той же целью понятием удельного объёма (частное от деления атомного или молекулярного веса на плотность простого или сложного вещества).

В те годы под влиянием работ Ш. Же-papa происходило становление понятия молекулы, изменение системы атомных весов. М. в работе "Удельные объёмы" всецело становится на сторону воззрений Жерара, применяет его систему атомных весов. Там же М. даёт вывод зависимости, к-рая в совр. обозначениях выражается ур-нием М = 2,016 d (М - мол вес газа или пара, d - его плотность по отношению к водороду). Отклонения от этой зависимости (к-рую М. назвал законом Авогадро - Жерара) он объяснил термич. диссоциацией, что позже подтвердилось на опыте.

В 1860 М. и 6 рус. химиков (среди них Н. Н. Зинин, А. П. Бородин) участвовали в Междунар. конгрессе химиков в Карлсруэ. По докладу С. Канниццаро съезд строго разграничил понятия атом, молекула, эквивалент, к-рые до того времени не различались, что приводило к путанице. М. последовательно проводил новые воззрения в лекциях и печатных работах ("Органическая химия", 1861; -"Основы химии", ч. 1-2, 1869-1871).

Приступив к чтению курса неорганич. химии в Петерб. ун-те, М., не найдя ни одного пособия, к-рое мог бы рекомендовать студентам, начал писать свой классич. труд "Основы химии". По словам М., "тут много самостоятельного..., а главное - периодичность элементов, найденная именно при обработке „Основ химии"" (Соч., т. 25, 1952, с. 699). Открытие М. периодич. закона датируется 17 февр. (1 марта) 1869, когда он составил таблицу, озаглавленную "Опыт системы элементов, основанной на их атомном весе и химическом сходстве". Оно явилось результатом долголетних поисков. Однажды на вопрос, как он открыл периодич. систему, М. ответил: "Я над ней может быть двадцать лет думал, а вы думаете: сидел и вдруг... готово" (Д. И. Менделеев по воспоминаниям О. Э. Озаровской, М., 1929, с. 110). М. составил несколько вариантов периодич. системы и на её основе исправил атомные веса нек-рых известных элементов, предсказал существование и свойства ещё неизвестных элементов. На первых порах сама система, внесённые исправления и прогнозы М. были встречены сдержанно. Но после открытия предсказанных М. элементов (галлий, германий, скандий) периодич. закон стал получать признание. Периодич. система М. явилась своего рода путеводной картой при изучении неорганич. химии и исследовательской работе в этой области.

Сделанные в кон. 19 - нач. 20 вв. открытия инертных газов и радиоактивных элементов не поколебали периодич. закона, как сначала считалось, а укрепили его. Открытие изотопов устранило нек-рые нарушения данной М. последовательности расположения элементов в порядке возрастания атомных весов (Аг - К, Со - Ni, Те - I). Теория строения атома показала, что М. совершенно правильно расположил элементы в порядке возрастания их атомных номеров, и разрешила все сомнения о месте лантаноидов в периодич. системе (подробнее см. Периодическая система элементов Д. И. Менделеева и Периодический закон Менделеева). Так сбылось предвидение М.: "...периодическому закону - будущее не грозит разрушением, а только надстройки и развитие обещает..." (Архив Д. И. Менделеева, т. 1, 1951, с. 34). Периодич. закон давно получил всеобщее признание как один из основных законов химии.

Периодич. закон явился фундаментом, на к-ром М. создал свою книгу "Основы химии". По словам А. Ле Шателье, все учебники химии 2-й пол. 19 в. построены по одному образцу, "...но заслуживает быть отмеченной лишь единственная попытка действительно отойти от классических традиций - это попытка Менделеева; его руководство по химии задумано по совершенно особому плану" ∙(L e Chatelier H., Lecons sur le carbone, la combustion, les lois chimi-ques, P., 1926, p. VII). По богатству и смелости науч. мысли, оригинальности освещения материала, влиянию на развитие и преподавание химии этот труд М. не имел равного в мировой хим. лит-ре. При жизни М. "Основы химии" издавались в России 8 раз (8 изд., 1906),
а также вышли в переводах на англ. (1891, 1897, 1905), нем. (1891) и франц. (1895) языки. В СССР они переиздавались 5 раз (в 1927-28, 1931, 1932, 1934, 1947).

Свои взгляды на природу растворов М. изложил в монографии "Исследование водных растворов по удельному весу" (1887), содержащей огромный экспериментальный материал. По воззрениям М., растворы - это находящиеся в состоянии диссоциации жидкие системы, образованные молекулами растворителя, растворённого вещества и продуктов их взаимодействия - нестойких определённых химических соединений. На диаграммах зависимости между составом и производной от плотности по составу (т. е. пределом отношения приращения плотности к приращению состава) М. обнаружил изломы, которые он считал отвечающими образованию химических соединений. Значительно позже (начиная с 1912) Н. С. Курнаков, исходя из идей М., создал учение о сингулярных точках химических диаграмм (см. также Физико-химический анализ). В своих взглядах на растворы М. предвосхитил теории гидратации (и вообще сольватации) ионов. Представления М. о хим. взаимодействии между компонентами растворов имели большое значение для разработки совр. учения о растворах.

Из исследований М. по физике особенно важны указание на существование "температуры абсолютного кипения" жидкостей (1860-61), позднее названной критической температурой; вывод ур-ния состояния для одного моля идеального газа (1874; см. Клапейрона уравнение); изучение отклонений реальных газов от закона Бойля - Мариотта при малых давлениях, для чего он разработал спец. аппаратуру. В 1887 М. совершил (без пилота) подъём на возд. шаре для наблюдения солнечного затмения и изучения верхних слоев атмосферы.

М.- автор ряда работ по метрологии. Им создана точная теория весов, разработаны наилучшие конструкции коромысла и арретира, предложены точнейшие приёмы взвешивания. При участии и под рук. М. в Гл, палате мер и весов были возобновлены прототипы фунта и аршина, произведено сравнение рус. эталонов мер с английскими и метрическими (1893-98). М. считал необходимым введение в России метрич. системы мер. По настоянию М. в 1899 она была допущена факультативно и только в 1918 стала обязательной.

В науч. деятельности М. был стихийным материалистом, признавал объективность и познаваемость законов природы, возможность использования их в интересах человека. М. писал: "...границ научному познанию и предсказанию предвидеть невозможно" (Соч., т. 24, 1954, с. 458, прим.). Он отмечал также: "...без самобытного движения немыслима ни одна малейшая доля вещества..." ("Основы химии", т. 1, 1947, с. 473).

Важнейшей чертой деятельности М. была неразрывная связь науч. исследований с потребностями экономич. развития страны. Особое внимание М. уделял нефтяной, угольной, металлургич. и хим. пром-сти. С 1860-х гг. он не раз приезжал для консультаций на Бакинские нефтепромыслы; был инициатором устройства нефтепроводов и разностороннего использования нефти как хим. сырья. М. предложил принцип непрерывной дробной перегонки нефти, высказал (1877 гипотезу её образования в результат взаимодействия карбидов железа с глу бинными водами при высоких темп-рах В отчёте о командировке в Донецкук область (1888) он указал мероприятия для быстрейшего освоения природных богатств Донбасса (кам. угля, жел. руд, кам. соли и др.), предсказал краю великую пром. будущность, впервые высказал идею подземной газификации углей. Расширение разработки угольных месторождений России М. связывал с развитием произ-ва чугуна, стали и меди; отмечал необходимость добычи хромовых и марганцевых руд на Урале и Кавказе. М. считал первоочередными задачами увеличение произ-ва соды, серной к-ты, искусственных минеральных удобрений на базе отечеств, сырья; на много лет вперёд он наметил программу освоения огромных природных богатств страны.

В работах по вопросам с. х-ва М. возражал против распространённой тогда "теории убывающего плодородия почвы" и считал возможным многократное повышение плодородия земли удобрениями. Основываясь на результатах полевых опытов (1867-69), М. указывал на необходимость известкования кислых почв, применения размолотых фосфоритов, суперфосфата, азотных и калийных удобрений, совместного внесения минеральных и органич. удобрений. Он поддерживал начинания В. В. Докучаева (проведение почвенных обследований, организацию кафедр почвоведения и др.).

М. уделял большое внимание орошению земель Ниж. Поволжья, улучшению судоходства на реках России, постройке новых жел. дорог, освоению Сев. морского пути и др. крупным проблемам. Интересуясь развитием пром-сти и науч. исследованиями, он ездил не только по стране, но и в Зап. Европу и США, знакомясь с заводами и промышленными выставками.

Передовой обществ, деятель, М. ратовал за пром. развитие и экономич. независимость России. Это отразилось и в его работе в Совете торговли и мануфактур, где он занимался разработкой нового таможенного тарифа (1889-92). Процветание страны М. связывал не только с широким и рациональным использованием её природных богатств, но и с развитием творческих сил народа, с распространением просвещения и науки. Направление рус. нар. образования, по М., должно быть жизненным и реальным (а не т. н. классическим), доступным для всех сословий. Особое значение М. придавал подготовке учителей и профессоров; сам был талантливым лектором и воспитателем науч. смены. Учениками или последователями М. были А. А. Байков, В. И. Вернадский, Т.Г.Густавсон, В. А. Кистяковский, В. Л. Комаров, Д. П. Коновалов, Н. С. Курнаков, А. Л. Потылицын, К. А. Тимирязев, В. Е. Тищенко, И. Ф. Шредер и др Все рус. химики кон. 19 - нач. 20 вв. учились по его "Основам химии".

М. вместе с А. А. Воскресенским, Н. Н. Зининым и Н. А. Меншуткиным был инициатором основания Русского хим. об-ва (1868; в 1878 объединено с Русским физ. об-вом в Русское физико-хим. общество; его отделение химии преобразовано в 1932 во Всесоюзное хим. об-во им. Д. И. Менделеева; см. Химическое общество им. Д. И. Менделеева).

М. ещё при жизни был известен во мн. странах, получил св. 130 дипломов и почётных званий от рус. и зарубежных академий, учёных оо-в и уч. заведений (см. "Материалы по истории отечественной химии", М.-Л., 1950, с. 116-21).

В СССР учреждены менделеевские премии за выдающиеся работы по физике и химии, присуждаемые Академией наук. Имя М. (кроме упомянутых выше Всесоюзного хим. об-ва и Всесоюзного ин-та метрологии) носят Моск. хим.-тех-нологич. ин-т и Тобольский гос. пед. ин-т. В честь М. названы: подводный хребет в Сев. Ледовитом ок., действующий вулкан на о. Кунашир (Курильские о-ва), кратер на Луне, минерал менделеевит, н.-и. судно АН СССР для океа-нографич. исследований и др. В СССР укрепилась традиция проведения Менделеевских съездов по общей и прикладной химии (с 1907 по 1969 состоялось 10 съездов). В Ленинграде проводятся (с 1939) ежегодные Менделеевские чтения. В здании ЛГУ (в бывшей квартире М.) находится основанный в 1911 Музей и науч. архив Д. И. Менделеева.

Амер. учёные (Г. Сиборг и др.), синтезировавшие в 1955 элемент 101, дали ему название менделевий (Md) "...в знак признания приоритета великого русского химика Дмитрия Менделеева, который первым использовал периодическую систему элементов для предсказания химических свойств тогда ещё не открытых элементов. Этот принцип явился ключом при открытии почти всех трансурановых элементов" (Сиборг Г., Искусственные трансурановые элементы, М., 1965, с. 49). В 1964 имя М. занесено на Доску почёта науки Бриджпортского ун-та (шт. Коннектикут, США) в числе имён величайших учёных мира.

С о ч.: Соч., т. 1-25, М.- Л., 1934-1954 (загл. т. 2 и 3, Избр. соч.); Архив Д. И. Менделеева. Автобиографические материалы. Сб. документов, т. 1, Л., 1951; Периодический закон, ред., статья и примечания Б. М. Кедрова, М., 1958; то же, Дополнительные материалы, М., I960; в серии "Научный архив": Растворы, [Л.], 1959; Освоение Крайнего Севера, М.- Л., 1960; Избранные лекции по химии, М., 1968.

Лит.: Труды Первого Менделеевского съезда по общей и прикладной химии, состоявшегося в Петербурге с 29 по 30 дек. 1907 т., СПБ, 1909, с. 8 - 173 (речи В. Е. Ти-щенко, Н. Н. Бекетова, Г. Г. Густавсона, П. И. Вальдена, Н. Е. Жуковского и др.); Менделеева А. И., Менделеев в жизни, [М.], 1928; Ч у га ев Л. А., Дмитрий Иванович Менделеев. Жизнь и деятельность, Л., 1924; [Озаровская О. Э.], Д. И. Менделеев по воспоминаниям О. Э. Озаров-ской, М., 1929; Младенцев М. Н. и ТищенкоВ.Е., Дмитрий Иванович Менделеев, его жизнь и деятельность, т. 1, ч. 1-2, М.- Л., 1938; Ш о с т ь и н Н. А., Д. И. Менделеев и проблемы измерения, М., 1947; Писаржевский О., Дмитрий Иванович Менделеев. 1834 - 1907, 2 изд., М., 1953; Д. И. Менделеев. Жизнь и труды, М., 1957 (имеется библ. трудов М.); П а р-хоменкоВ. Е., Д. И. Менделеев и русское нефтяное дело, М., 1957; К е д-р о в Б. М., День одного великого открытия, М., 1958; Иониди П. П., Мировоззрение Д. И. Менделеева, М., 1959; Ф и г у-ровский Н. А., Дмитрий Иванович Менделеев, 1834-1907, М., 1961; Макаре-ня А. А., Филимонова И. Н., Д. И. Менделеев и Петербургский университет, Л., 1969; Макар еня А. А., Д. И. Менделеев и физико-химические науки. Опыт научной биографии Д. И. Менделеева, М., 1972; Макар еня А. А., Филимонова И. Н., К а р п и л о Н.Г. [сост.], Д. И. Менделеев в воспоминаниях современников, 2 изд., М., 1973; К о з л о в В. В., Всесоюзное химическое общество имени Д. И. Менделеева, 1868-1968, М., 1971; Walden P., Dmitri Iwanowitsch Mendelejeff, "Berichte der Deutschen chemi-schen Gesellschaft zu Berlin", 1908, Bd 41, S. 4719 - 800; Tilden W. A., Mende-leeff memorial lecture, "Journal of the Chemical Society", L., 1909, v. 95, p. 19 - 40,273 - 285; В r a u n е r В., D. I. Mendeleev, "Collection des travaux chimiques de Tchecoslovaquie", (Praha), 1930, v. 1-2, № 5-6, p. 219-243; Leicester H. M., D. I. Mendeleev, в кн.: Great chemists, edited by E. Farber, N. Y., 1961, p. 717 - 732. См. также лит. при ст. Периодическая система элементов Д. И. Менделеева. С. А, Погодин.

------------------------------------------

ГЛАВНЫЙ ПЕДАГОГИЧЕСКИЙ ИНСТИТУТ, высшее педагогическое закрытое учебное заведение, учреждённое по уставу 23 дек. 1816 на базе реорганизованного Петербургского пед. ин-та (1804-16). Задачей Г. п. и. была подготовка учителей для гимназий, наставников для частных уч. заведений и пансионов, а также профессоров и преподавателей вузов. Имел 6-летний курс обучения; в ин-те было 3 отделения - философских и юридич. наук; физич. и матем. наук; ист. и словесных наук. Г. п. и. выпуска не имел, и все студенты были переведены в Петербургский ун-т (1819).

После 10-летнего перерыва, в течение к-рого в России не было спец. высшего пед. учреждения и подготовка учитечей происходила в ун-тах, по уставу 30 сент. 1828 был вновь учреждён Г. п. и. Ин-т имел три отделения - философских и юридич. наук; матем. и физич. наук; ист. и словесных наук. В авг. 1849 курс был сокращён до 4 лет и ограничен двумя ф-тами - физико-математическим и историко-филологическим.

Для подготовки учителей низших уездных и приходских училищ 12 дек. 1838 в виде особого отделения при Г. п. и. был учреждён второй разряд , ставший постоянным местом практики студентов Г. п. и. (указом 26 июля 1847 он был упразднён).

Состав студентов Г. п. и. (всего 100 чел.) комплектовался из разночинцев, преим. воспитанников духовных семинарий. Студенты принимались на казённое содержание и обеспечивались общежитием, для них были введены строгий режим и мелочная регламентация поведения. Г.п.и. должен был выпускать преподавателей, преданных самодержавию и православию. Реакц. дух насаждался особенно с 1846, когда директором был назначен И. И. Давыдов. Реакции противостояли прогрессивные устремления нек-рых профессоров, выдающихся учёных, оказывавших большое влияние на студентов (напр., филологи И. И. Срезневский и Н. М. Благовещенский, математик М. В. Остроградский, химик А. А. Воскресенский, ботаник И. О. Шиховский и др.).

В числе окончивших курс Г. п. и. были: Н. А. Добролюбов, Д. И. Менделеев и ряд выдающихся профессоров и учителей: Н. С. Будаев (математик), Н. А. Вышнеградский (педагог), К. Д. Краевич (физик) и др. Всего за 11 выпусков Г. п. и. подготовил 682 педагога, из к-рых 43 стали профессорами и преподавателями вузов, 377 - учителями ср. школ, 262 - учителями начальных школ. По постановлению 15 нояб. 1858 Г. п. и. был закрыт (фактически прекратил существование с 1859).

------------------------------------------

ГЛАВНАЯ ПАЛАТА МЕР И ВЕСОВ, центральное государственное метрологическое учреждение, созданное в России в 1893 по инициативе Д. И. Менделеева для осуществления в стране единообразия, точности и взаимного соответствия мер и весов. В 1931 реорганизована во Всесоюзный институт метрологии и стандартизации, на базе к-рого в 1934 образован Всесоюзный научно-исследовательский институт метрологии им. Д. И. Менделеева (ВНИИМ, см. Метрологии институт Всесоюзный научно-исследовательский им. Д. И. Менделеева).

------------------------------------------

МЕТРОЛОГИИ ИНСТИТУТ Всесоюзный научно-исследовательский им. Д. И. Менделеева (ВНИИМ), находится в Ленинграде. Осн. в 1893 как Гл. палата мер и весов взамен существовавшего с 1842 Депо образцовых мер и весов. Организатором и первым управляющим был Д. И. Менделеев. Основной профиль - исследования по метрологии, создание и хранение гос. эталонов, разработка методов и средств измерений высшей точности и средств поверки. В 1931-34 назывался Всесоюзным ин-том метрологии и стандартизации (ВИМС), в 1934 получил наст, наименование. В 1945 ин-ту присвоено имя Д. И. Менделеева, в 1971 награждён орденом Трудового Красного Знамени.

Ин-т подготовил ряд действовавших в России и в СССР положений о мерах и весах, активно участвовал в проведении метрич. реформы (1918-27), в нём разрабатывались все отечественные стандарты на единицы физических величин. Большинство государственных эталонов (для воспроизведения единиц длины, маооы, эдс, электрического сопротивления, индуктивности и др.) хранится и применяется во ВНИИМ. Лаборатории ин-та ведут исследования по общим вопросам метрологии и по след, областям измерений: механическим, электрическим, магнитным, тепловым и температурным, гидродинамическим, оптическим и световым, физико-химическим, ионизирующих излучений. В составе ин-та имеются лаборатории гос. надзора за средствами измерений, спец. конструкторское бюро и опытный з-д "Эталон". В Свердловске и Тбилиси действуют филиалы ин-та. Издаются "Труды ВНИИМ" (с 1894), являющиеся продолжением "Временника Главной палаты мер и весов".

Лит.: Сто лет государственной службы мер и весов в СССР, М.- Л., 1945; Всесоюзный научно-исследовательский институт метрологии им. Д. И. Менделеева, Л., 1967; Метрологическая служба СССР, М., 1968.

К. П. Широков.

------------------------------------------

ДИССОЦИАЦИЯ (от лат. dissociatio -разделение, разъединение), процесс, заключающийся в распаде молекул на несколько более простых частиц - молекул, атомов, радикалов или ионов. Обычно различают три вида Д.: термическая диссоциация, происходящая при повышении темп-ры (напр., N2O4-><-2NO2), электролитическая диссоциация, происходящая при растворении электролитов (расщепление молекул электролитов на ионы, напр. КОН-><-K+ + ОН-), и фотохимическая диссоциация, наблюдающаяся при действии света (напр., Сl2 + hv-> -> 2С1, где hv - квант света). Количественной характеристикой Д. служит степень диссоциации - отношение числа распавшихся молекул к общему числу молекул. О константе диссоциации см. Равновесие химическое.

------------------------------------------

ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ Д. И. Менделеева, естественная классификация химических элементов, являющаяся табличным (или др. графическим) выражением периодического закона Менделеева. П. с. э. разработана Д. И. Менделеевым в 1869- 1871.

История П. с. э. Попытки систематизации хим. элементов предпринимались различными учёными в Германии, Франции, Англии, США с 30-х годов 19 в. Предшественники Менделеева - И. Дёберейнер, Ж. Дюма, франц. химик А. Шанкуртуа, англ. химики У. Одлинг, Дж. Ньюлендс и др. установили существование групп элементов, сходных по хим. свойствам, т. н. "естественных групп" (напр., "триады" Дёберейнера). Однако эти учёные не шли дальше установления частных закономерностей внутри групп. В 1864 Л. Мейер на основании данных об атомных весах предложил таблицу, показывающую соотношение атомных весов для неск. характерных групп элементов. Теоретич. обобщений из своей таблицы Мейер не сделал.

Прообразом научной П. с. э. явилась таблица "Опыт системы элементов, основанной на их атомном весе и химическом сходстве", составленная Менделеевым 1 марта 1869 (рис. 1). На протяжении последующих двух лет автор совершенствовал эту таблицу, ввёл представления о группах, рядах и периодах элементов; сделал попытку оценить ёмкость малых и больших периодов, содержащих, по его мнению, соответственно по 7 и 17 элементов. В 1870 он назвал свою систему естественной, а в 1871 - периодической. Уже тогда структура П. с. э. приобрела во многом совр. очертания (рис. 2). Чрезвычайно важным для эволюции П. с. э. оказалось введённое Менделеевым представление о месте элемента в системе; положение элемента определяется номерами периода и группы. Опираясь на это представление, Менделеев пришёл к выводу о необходимости изменения принятых тогда атомных весов нек-рых элементов (U, In, Се и его аналогов), в чём состояло первое практич. применение П. с. э., а также впервые предсказал существование и осн. свойства неск. неизвестных элементов, к-рым соответствовали незаполненные клетки П. с. э. Классич. примером является предсказание "экаалюминия" (будущего Ga, открытого П. Лекоком де Буабодраном в 1875), "экабора" (Sc, открытого швед. учёным Л. Нилъсоном в 1879) и "экасилиция" (Ge, открытого нем. учёным К. Винклером в 1886). Кроме того, Менделеев предсказал существование аналогов марганца (будущие Тс и Re), теллура (Ро), иода (At), цезия (Fr), бария (Ra), тантала (Ра).

Рис. 1. Таблица "Опыт системы элементов, основанной на их атомном весе и химическом сходстве", составленная Д. И. Менделеевым 1 марта 1869.

П. с. э. не сразу завоевала признание как фундаментальное науч. обобщение; положение существенно изменилось лишь после открытия Ga, Sc, Ge и установления двухвалентности Be (он долгое время считался трёхвалентным). Тем не менее П. с. э. во многом представляла эмпирич. обобщение фактов, поскольку был неясен физ. смысл периодич. закона и отсутствовало объяснение причин периодич. изменения свойств элементов в зависимости от возрастания атомных весов. Поэтому вплоть до физ. обоснования периодич. закона и разработки теории П. с. э. мн. факты не удавалось объяснить. Так, неожиданным явилось открытие в конце 19 в. инертных газов, к-рые, казалось, не находили места в П. с. э.; эта трудность была устранена благодаря включению в П. с. э. самостоят. нулевой группы (впоследствии Villa-подгруппы). Открытие многих "радиоэлементов" в нач. 20 в. привело к противоречию между необходимостью их размещения в П. с. э. и её структурой (для более чем 30 таких элементов было 7 "вакантных" мест в шестом и седьмом периодах). Это противоречие было преодолено в результате открытия изотопов. Наконец, величина атомного веса (ат. массы) как параметра, определяющего свойства элементов, постепенно утрачивала своё значение.

Одна из гл. причин невозможности объяснения физ. смысла периодич. закона и П. с. э. состояла в отсутствии теории строения атома (см. Атом, Атомная физика). Поэтому важнейшей вехой на пути развития П. с. э. явилась планетарная модель атома, предложенная Э. Резерфордом (1911). На её основе голландский учёный А. ван ден Брук высказал предположение (1913), что порядковый номер элемента в П. с. э. (атомный номер Z) численно равен заряду ядра атома (в единицах элементарного заряда). Это было экспериментально подтверждено Г. Мозли (1913-14, см. Мозли закон). Так удалось установить, что периодичность изменения свойств элементов зависит от атомного номера, а не от атомного веса. В результате на науч. основе была определена нижняя граница П. с. э. (водород как элемент с минимальным Z = 1); точно оценено число элементов между водородом и ураном; установлено, что "пробелы" в П. с. э. соответствуют неизвестным элементам с Z = 43, 61, 72, 75, 85, 87.

Оставался, однако, неясным вопрос о точном числе редкоземельных элементов, и (что особенно важно) не были вскрыты причины периодического изменения свойств элементов в зависимости от Z. Эти причины были найдены в ходе дальнейшей разработки теории П. с. э. на основе квантовых представлений о строении атома (см. далее). Физич. обоснование периодич. закона и открытие явления изотопии позволили научно определить понятие "атомная масса" ("атомный вес"). Прилагаемая периодическая система (см. вклейку к стр. 416) содержит современные значения атомных масс элементов по углеродной шкале в соответствии с Международной таблицей 1973. В квадратных скобках приведены массовые числа наиболее долгоживущих изотопов радиоактивных элементов. Вместо массовых чисел наиболее устойчивых изотопов 99Тс, 226Ra, 231Ра и 237Np указаны атомные массы этих изотопов, принятые (1969) Международной комиссией по атомным весам.

Рис. 2. "Естественная система элементов" Д. И. Менделеева (короткая форма), опубликованная во 2-й части 1-го издания "Основ химии" в 1871.

Структура П. с. э. Современная (1975) П. с. э. охватывает 106 хим. элементов; из них все трансурановые (Z = 93-106), а также элементы с Z = 43 (Тс), 61 (Рm), 85 (At) и 87 (Fr) получены искусственно. За всю историю П. с. э. было предложено большое количество (неск. сотен) вариантов её графич. изображения, преим. в виде таблиц; известны изображения и в виде различных геометрич. фигур (пространств. и плоскостных), аналитич. кривых (напр., спирали) и т. д. Наибольшее распространение получили три формы П. с. э.: короткая, предложенная Менделеевым (рис. 2) и получившая всеобщее признание (в совр. виде она дана на цветной вклейке); длинная (рис. 3); лестничная (рис. 4). Длинную форму также разрабатывал Менделеев, а в усовершенствованном виде она была предложена в 1905 А. Вернером. Лестничная форма предложена англ. учёным Т. Бейли (1882), дат. учёным Ю. Томсеном (1895) и усовершенствована Н. Бором (1921). Каждая из трёх форм имеет достоинства и недостатки.

Фундаментальным принципом построения П. с. э. является разделение всех хим. элементов на группы и периоды. Каждая группа в свою очередь подразделяется на главную (а) и побочную (б) подгруппы. В каждой подгруппе содержатся элементы, обладающие сходными хим. свойствами. Элементы а- и б-подгрупп в каждой группе, как правило, обнаруживают между собой определённое хим. сходство, гл. обр. в высших степенях окисления, к-рые, как правило, соответствуют номеру группы. Периодом наз. совокупность элементов, начинающаяся щелочным металлом и заканчивающаяся инертным газом (особый случай - первый период); каждый период содержит строго определённое число элементов.

Рис. 3. Длинная форма периодической системы элементов (современный вариант).

Рис. 4. Лестничная форма периодической системы элементов (по Н. Бору, 1921).

П. с. э. состоит из 8 групп и 7 периодов (седьмой пока не завершён). Специфика первого периода в том, что он содержит всего 2 элемента: n и Не. Место n в системе неоднозначно: поскольку он проявляет свойства, общие со щелочными металлами и с галогенами, его помещают либо в Ia-, либо (предпочтительнее) в Vila-подгруппу. Гелий - первый представитель Villa -подгруппы (однако долгое время Не и все инертные газы объединяли в самостоят. нулевую группу).

Второй период (Li - Ne) содержит 8 элементов. Он начинается щелочным металлом Li, единств. степень окисления к-рого равна I. Затем идёт Be - металл, степень окисления II. Металлич. характер следующего элемента В выражен слабо (степень окисления III). Идущий за ним С - типичный неметалл, может быть как положительно, так и отрицательно четырёхвалентным. Последующие N, О, F и Ne - неметаллы, причём только у N высшая степень окисления V соответствует номеру группы; кислород лишь в редких случаях проявляет положит. валентность, а для F известна степень окисления VI. Завершает период инертный газ Ne.

Третий период (Na-Аr) также содержит 8 элементов, характер изменения свойств к-рых во многом аналогичен наблюдающемуся во втором периоде. Однако Mg, в отличие от Be, более металличен, равно как и Аl по сравнению с В, хотя Аl присуща амфотерностъ. Si, p, S, Cl, Аr - типичные неметаллы, но все они (кроме Аr) проявляют высшие степени окисления, равные номеру группы. Т. о., в обоих периодах по мере увеличения Z наблюдается ослабление металлич. и усиление неметаллич. характера элементов. Менделеев называл элементы второго и третьего периодов (малых, по его терминологии) типическими. Существенно, что они принадлежат к числу наиболее распространённых в природе, а С, N и О являются наряду с n основными элементами органич. материи (органогенами). Все элементы первых трёх периодов входят в подгруппы а.

По совр. терминологии (см. далее), элементы этих периодов относятся к s-элементам (щелочные и щёлочноземельные металлы), составляющим Ia- и Па-подгруппы (выделены на цветной таблице красным цветом), и р-элементам (В-Ne, al-Аr), входящим в IIIa- VIIIa- подгруппы (их символы выделены оранжевым цветом). Для элементов малых периодов с возрастанием порядковых номеров сначала наблюдается уменьшение атомных радиусов, а затем, когда число электронов в наружной оболочке атома уже значительно возрастает, их взаимное отталкивание приводит к увеличению атомных радиусов. Очередной максимум достигается в начале следующего периода на щелочном элементе. Примерно такая же закономерность характерна для ионных радиусов.

Четвёртый период (К-Кr) содержит 18 элементов (первый большой период, по Менделееву). После щелочного металла К и щёлочноземельного Са (s-элементы) следует ряд из десяти т. н. переходных элементов (Sc-Zn), или d-элементов (символы даны синим цветом), к-рые входят в подгруппы б соответствующих групп П. с. э. Большинство переходных элементов (все они металлы) проявляет высшие степени окисления, равные номеру группы. Исключение - триада Fe-Со-Ni, где два последних элемента максимально положительно трёхвалентны, а железо в определённых условиях известно в степени окисления VI. Элементы, начиная с Ga и кончая Кr (р-элементы), принадлежат к подгруппам а, и характер изменения их свойств такой же, как и в соответствующих интервалах Z у элементов второго и третьего периодов. Установлено, что Кr способен образовывать хим. соединения (гл. обр. с F), но степень окисления VIII для него неизвестна.

Пятый период (Rb-Хе) построен аналогично четвёртому; в нём также имеется вставка из 10 переходных элементов (Y-Cd), d-элементов. Специфич. особенности периода: 1) в триаде Ru-Rh-Pd только рутений проявляет степень окисления VIII; 2) все элементы подгрупп a проявляют высшие степени окисления, равные номеру группы, включая и Хе; 3) у I отмечаются слабые металлич. свойства. Т. о., характер изменения свойств по мере увеличения Z у элементов четвёртого и пятого периодов более сложен, поскольку металлич. свойства сохраняются в большом интервале порядковых номеров.

Шестой период (Cs-Rn) включает 32 элемента. В нём помимо 10 d-элементов (La, Hf-Hg) содержится совокупность из 14 f-элементов, лантаноидов, от Се до Lu (символы чёрного цвета). Элементы от La до Lu химически весьма сходны. В короткой форме П. с. э. лантаноиды включаются в клетку La (поскольку их преобладающая степень окисления III) и записываются отд. строкой внизу таблицы. Этот приём несколько неудобен, поскольку 14 элементов оказываются как бы вне таблицы. Подобного недостатка лишены длинная и лестничная формы П. с. э., хорошо отражающие специфику лантаноидов на фоне целостной структуры П. с. э. Особенности периода: 1) в триаде Os-Ir-Pt только осмий проявляет степень окисления VIII; 2) At имеет более выраженный (по сравнению с I) металлич. характер; 3) Rn, по-видимому (его химия мало изучена), должен быть наиболее реакционноспособным из инертных газов.

Седьмой период, начинающийся с Fr (Z = 87), также должен содержать 32 элемента, из к-рых пока известно 20 (до элемента с Z = 106). Fr и Ra - элементы соответственно Ia- и IIа-подгрупп (s-элементы), Ас - аналог элементов IIIб-подгруппы (d-элемент). Следующие 14 элементов, f-элементы (с Z от 90 до 103), составляют семейство актиноидов. В короткой форме П. с. э. они занимают клетку Ас и записываются отд. строкой внизу таблицы, подобно лантаноидам, в отличие от к-рых характеризуются значит. разнообразием степеней окисления. В связи с этим в хим. отношении ряды лантаноидов и актиноидов обнаруживают заметные различия. Изучение хим. природы элементов с Z  = 104 и Z  = 105 показало, что эти элементы являются аналогами гафния и тантала соответственно, т. е. d-элементами, и должны размещаться в IV 6- и V б-подгруппах. Членами (5-подгрупп должны быть и последующие элементы до Z =112, а далее (Z = 113-118) появятся р-элементы (IIIa - Villa-подгруппы).

Теория П. с. э. В основе теории П. с. э. лежит представление о специфич. закономерностях построения электронных оболочек (слоев, уровней) и подоболочек (оболочек, подуровней) в атомах по мере роста Z (см. Атом, Атомная физика). Это представление было развито Бором в 1913-21 с учётом характера изменения свойств хим. элементов в П. с. э. и результатов изучения их атомных спектров. Бор выявил три существ. особенности формирования электронных конфигураций атомов: 1) заполнение электронных оболочек (кроме оболочек, отвечающих значениям главного квантового числа n = 1 и 2) происходит не монотонно до полной их ёмкости, а прерывается появлением совокупностей электронов, относящихся к оболочкам с большими значениями п; 2) сходные типы электронных конфигураций атомов периодически повторяются; 3) границы периодов П. с. э. (за исключением первого и второго) не совпадают с границами последовательных электронных оболочек.

В обозначениях, принятых в атомной физике, реальная схема формирования электронных конфигураций атомов по мере роста Z может быть в общем виде записана след. образом:
Вертикальными чертами разделены периоды П. с. э. (их номера обозначены цифрами наверху); жирным шрифтом выделены подоболочки, к-рыми завершается построение оболочек с данным п. Под обозначениями подоболочек проставлены значения главного (п) и орбитального (/) квантовых чисел, характеризующие последовательно заполняющиеся подоболочки. В соответствии с Паули принципом ёмкость каждой электронной оболочки равна 2n2, а ёмкость каждой подоболочки - 2(2l + 1). Из вышеприведённой схемы легко определяются ёмкости по-следоват. периодов: 2, 8, 8, 18, 18, 32, 32... Каждый период начинается элементом, в атоме которого появляется электрон с новым значением п. Т. о., периоды можно характеризовать как совокупности элементов, начинающиеся элементом со значением п, равным номеру периода, и l = 0 (ns1-элементы), и завершающиеся элементом с тем же n и l = 1 (nр6-элементы); исключение - первый период, содержащий только 1s-элементы. При этом к а-подгруппам принадлежат элементы, для атомов к-рых n равно номеру периода, a l = = 0 или 1, т. е. происходит построение электронной оболочки с данным п. К б-подгруппам принадлежат элементы, в атомах к-рых происходит достройка оболочек, остававшихся незавершёнными (в данном случае n меньше номера периода, а l = 2 или 3). Первый - третий периоды П. с. э. содержат только элементы a-подгрупп.

Приведённая реальная схема формирования электронных конфигураций атомов не является безупречной, поскольку в ряде случаев чёткие границы между последовательно заполняющимися подоболочками нарушаются (напр., после заполнения в атомах Cs и Ва 6s-подоболочки в атоме лантана появляется не 4f-, а 5d-электрон, имеется 5d-электрон в атоме Gd и т. д.). Кроме того, первоначально реальная схема не могла быть выведена из к.-л. фундаментальных физ. представлений; такой вывод стал возможным благодаря применению квантовой механики к проблеме строения атома.

Типы конфигураций внеш. электронных оболочек атомов (на цветной вклейке конфигурации указаны) определяют осн. особенности хим. поведения элементов. Эти особенности являются специфическими для элементов a-подгрупп (s- и р-элементы), (б-подгрупп (d-элементы) и f-семейств (лантаноиды и актиноиды). Особый случай представляют собой элементы первого периода (Н и Не). Высокая хим. активность атомарного водорода объясняется лёгкостью отщепления единственного 1s-электрона, тогда как конфигурация атома гелия (1s 2) является весьма прочной, что обусловливает его хим. инертность.

Поскольку у элементов я-подгрупп происходит заполнение внеш. электронных оболочек (с n, равным номеру периода), то свойства элементов заметно меняются по мере роста Z. Так, во втором периоде Li (конфигурация 2s1) - химически активный металл, легко теряющий валентный электрон, a Be (2s2) - также металл, но менее активный. Металлич. характер следующего элемента В (2s2p) выражен слабо, а все последующие элементы второго периода, у к-рых происходит застройка 2р-подоболочки, являются уже неметаллами. Восьмиэлектронная конфигурация внеш. электронной оболочки Ne (2s2p6) чрезвычайно прочна, поэтому неон - инертный газ. Аналогичный характер изменения свойств наблюдается у элементов третьего периода и у s- и р-элементов всех последующих периодов, однако ослабление прочности связи внешних электронов с ядром в a-подгруппах по мере роста Z определённым образом сказывается на их свойствах. Так, у s-элементов отмечается заметный рост химической активности, а у р-элементов - нарастание металлич. свойств. В Villa-подгруппе ослабляется устойчивость конфигурации ns2np6, вследствие чего уже Кr (четвёртый период) приобретает способность вступать в хим. соединения. Специфика р-элементов 4-6-го периодов связана также с тем, что они отделены от s-элементов совокупностями элементов, в атомах к-рых происходит застройка предшествующих электронных оболочек.

У переходных d-элементов б-подгрупп достраиваются незавершённые оболочки с п, на единицу меньшим номера периода. Конфигурация внешних оболочек у них, как правило, ns2. Поэтому все d-элементы являются металлами. Аналогичная структура внешней оболочки d-элементов в каждом периоде приводит к тому, что изменение свойств d-элементов по мере роста Z не является резким и чёткое различие обнаруживается лишь в высших степенях окисления, в к-рых d-элементы проявляют определённое сходство с р-элементами соответствующих групп П. с. э. Специфика элементов VIIIб-подгруппы объясняется тем, что их d-подооолочки близки к завершению, в связи с чем эти элементы не склонны (за исключением Ru и Os) проявлять высшие степени окисления. У элементов Iб-подгруппы (Сu, Ag, Аu) d-подоболочка фактически оказывается завершённой, но ещё недостаточно стабилизированной, эти элементы проявляют и более высокие степени окисления (до III в случае Аи).

В атомах лантаноидов и актиноидов происходит достройка ранее незавершённых f-подоболочек с n, на 2 единицы меньшим номера периода; конфигурация внеш. оболочки сохраняется неизменной (ns 2); f-электроны у лантаноидов не оказывают существенного влияния на хим. свойства. Лантаноиды проявляют преим. степень окисления III (за счёт двух 6s-электронов и одного d-электрона, появляющегося в атоме La); однако такое объяснение не является достаточно удовлетворительным, т. к. 5d-электрон содержится только в атомах La, Се, Gd и Lu; поэтому считается, что в др. случаях степень окисления III обусловлена переходом одного из 4f-электронов в 5d-пoдoбoлoчку. Что касается актиноидов, то в интервале Z = 90-95 энергии связи электронов 6d и 5f оказываются весьма близкими, это объясняет способность элементов давать соединения в широком диапазоне степеней окисления - до VII у Np, Pu и Am. У актиноидов с Z >=96 предпочтительной становится степень окисления III. Оценка хим. свойств Кu и элемента 105 позволяет считать, что в этой области П. с. э. начинается систематич. заполнение 6d-подоболочки.

Выше были в общих чертах объяснены причины и особенности периодич. изменения свойств хим. элементов по мере роста Z. Это объяснение основано на анализе закономерностей реальной схемы формирования электронных конфигураций свободных атомов. Однако знание электронной конфигурации свободного атома часто не позволяет сделать однозначный вывод о важнейших хим. свойствах, к-рые должен проявлять соответствующий элемент. Напр., внеш. электронные конфигурации атомов Не и щёлочноземельных металлов совпадают (ns2), но "сходство" гелия с последними ограничивается лишь определённой аналогией в спектрах. Поэтому принцип периодического (по мере возрастания Z) повторения сходных типов электронных конфигураций лежит в основе периодич. системы свободных атомов. Что касается П. с. э., то она отражает закономерное изменение свойств элементов, проявляемых ими при хим. взаимодействиях; в ходе последних происходит перестройка электронных конфигураций взаимодействующих атомов, иногда значительная. Поэтому между свободными и связанными атомами существует определённое различие. В целом же сходство электронных конфигураций свободных атомов коррелирует с подобием хим. поведения соответствующих элементов. Задача строгого количеств. объяснения всей специфики проявляемых хим. элементами свойств и периодичности этих свойств оказывается чрезвычайно сложной, поэтому нельзя утверждать, что создана количеств. теория П. с. э. Отд. аспекты такой теории разрабатываются в русле совр. методов квантовой механики (см. Квантовая химия, Валентность).

Верхняя граница П. с. э. пока неизвестна, поэтому неизвестно и конечное количество элементов, охватываемых П. с. э. Вопрос о пределе искусств. синтеза элементов также пока не решён. Все изотопы уже известных элементов с Z  >= 101 являются короткоживущими (см. Ядерная химия). Однако существуют предположения, что ядра атомов гипотетич. элементов с Z = 114, 126, 164 и 184 будут достаточно устойчивы по отношению к спонтанному делению. Это даёт основания рассчитывать на осуществление синтеза таких элементов. Оценка электронных конфигураций и важнейших свойств неизвестных элементов седьмого периода показывает, что эти элементы, по-видимому, должны быть аналогами соответствующих элементов шестого периода. Напротив, для восьмого периода (состоящего, согласно теории, из 50 элементов) предсказывается весьма сложный характер изменения хим. свойств по мере роста Z, связанный с резким нарушением последовательности заполнения электронных подоболочек в атомах.

Значение П. с. э. П. с. э. сыграла и продолжает играть огромную роль в развитии естествознания. Она явилась важнейшим достижением атомно-молекулярного учения, позволила дать совр. определение понятия "химический элемент" и уточнить понятия о простых веществах и соединениях. Закономерности, вскрытые П. с. э., оказали существ. влияние на разработку теории строения атомов, способствовали объяснению явления изотонии. С П. с. э. связана строго науч. постановка проблемы прогнозирования в химии, что проявилось как в предсказании существования неизвестных элементов и их свойств, так и в предсказании новых особенностей хим. поведения уже открытых элементов. П. с. э.- фундамент химии, в первую очередь неорганической; она существенно помогает решению задач синтеза веществ с заранее заданными свойствами, разработке новых материалов, в частности полупроводниковых, подбору специфич. катализаторов для различных хим. процессов и т. д. П. с. э. - также науч. основа преподавания химии. Лит.: Менделеев Д. И., Периодический закон. Основные статьи, М., 1958; Кедров Б. М., Три аспекта атомистики. ч. 3. Закон Менделеева, М., 1969; Рабинович Е., Хило Э., Периодическая система элементов. История и теория, М.- Л., 1933; Карапетьянц М. X., Дракин С. И., Строение вещества, М., 1967; Астахов К. В., Современное состояние периодической системы Д. И. Менделеева, М., 1969; Кедров Б. М., Трифонов Д. Н., Закон периодичности и химические элементы. Открытия и хронология, М., 1969; Сто лет периодического закона химических элементов. Сборник статей, М., 1969; Сто лет периодического закона химических элементов. Доклады на пленарных заседаниях, М., 1971; Spronsen J. W. van, The periodic system of chemical elements. A history of the first hundred years, Amst.- L.- N. Y., 1969; Клечковский В. М., Распределение атомных электронов и правило последовательного заполнения (n + l)- групп, М., 1968; Трифонов Д. Н., О количественной интерпретации периодичности, М., 1971; Некрасов Б. В., Основы общей химии, т. 1 - 2, 3 изд., М., 1973; Кедров Б. М., Трифонов Д. Н., О современных проблемах периодической системы, М., 1974. Д. Н. Трифонов.

------------------------------------------

ПЕРИОДИЧЕСКИЙ ЗАКОН МЕНДЕЛЕЕВА, фундаментальный закон, устанавливающий периодическое изменение свойств химических элементов в зависимости от увеличения зарядов ядер их атомов. Открыт Д. И. Менделеевым в 1869 при сопоставлении свойств всех известных в то время элементов и величин их атомных весов. Термин "периодический закон" Менделеев впервые употребил в нояб. 1870, а в окт. 1871 дал окончательную формулировку П. з.: "...свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса" ("Периодический закон. [Основные статьи]", 1958, с. 111). Графическим (табличным) выражением П. з. явилась разработанная Менделеевым периодическая система элементов. Физ. смысл П. з. был вскрыт лишь после выяснения того, что заряд ядра атома возрастает при переходе от одного хим. элемента к соседнему (в периодич. системе) на единицу элементарного заряда. Численно заряд ядра равен порядковому номеру (атомному номеру Z) соответствующего элемента в периодич. системе, т. е. числу протонов в ядре, в свою очередь равному числу электронов соответствующего нейтрального атома (см. Атом). Хим. свойства атомов определяются структурой их внеш. электронных оболочек, периодически изменяющейся с увеличением заряда ядра, и, следовательно, в основе П. з. лежит представление об изменении заряда ядра атомов, а не атомной массы элементов. Наглядная иллюстрация П. з.- кривые периодич. изменения нек-рых физ. величин (ионизационных потенциалов, атомных радиусов, атомных объёмов) в зависимости от Z (см. Атомная физика). Какого-либо общего математич. выражения П. з. не существует.

П. з. имеет огромное естественнонаучное и философское значение. Он позволил рассматривать все элементы в их взаимной связи и прогнозировать свойства неизвестных элементов. Благодаря П. з. многие науч. поиски (напр., в области изучения строения вещества - в химии, физике, геохимии, космохимии, астрофизике) получили целенаправленный характер. П. з.- яркое проявление действия общих законов диалектики, в частности закона перехода количества в качество.

Лит. см. при ст. Периодическая система элементов.


На этом сегодня всё.

С уважением Литвинов Александр.



В избранное